Novel sensors to detect molecules for medicine and agrifood

November 27, 2012

(—Agribusiness and medicine are constantly seeking more efficient methods for detecting biomolecules. To meet this need, a novel concept of miniaturized sensors has been developed by researchers from LAAS-CNRS and the Université Toulouse III - Paul Sabatier in collaboration with HEMODIA, a company specialized in the development of medical devices. These sensors can measure the concentration in solution of a range of substances such as glucose, lactate and glutamate, which can help in making medical diagnosis or which are of interest in the food processing industry. This device, known as ElecFET, combines, for the first time, an acidity microsensor and an enzyme specific to the molecule studied, placed on the surface of a metal microelectrode. The integration of these two components on an electronic silicon chip at the micrometric scale represents a real technological advance. This work is published on 8 November 2012 in the journal Biosensors & Bioelectronics.

ElecFET (electrochemical field effect transistor) technology is based on a chemical reaction between the studied biomolecule and an enzyme of the oxidase family, capable of degrading it. The surface of the microelectrode of the device has an enzyme layer specific to the molecule being analyzed. When the molecule approaches the electrode, the enzyme captures and degrades it. This reaction produces hydrogen peroxide (H2O2), which is then oxidized on the electrode by means of a suitable electrical polarization, which releases hydronium ions, H3O+, and causes increased acidity in the vicinity of the electrode. It is this acidity peak that is detected by the pH associated with the device. Thus, as a function of the measured drop in pH, the ElecFET determines the concentration of molecule studied.

Apart from its innovative concept, the ElecFET represents a technological advance because it makes it possible, in an extremely restricted volume (less than one microliter), to degrade the molecule, control the oxidation of the peroxide thereby produced, and measure the associated local variation in pH. To do this, the intricate connection of the electrode and the pH sensor needs to be completed at the micrometric scale. The two components are integrated onto a , which ensures that the device is compatible with microelectronics technologies.

The ElecFET allows molecules to be detected over different concentration ranges, extending from the micromole to one mole per liter. The advantage of this system compared to existing technologies lies in the potential control of the reaction: by modifying the polarization of the microelectrode, it is possible to change the detection range of the device and thereby offset potentially insufficient activity of the enzyme used. Tested by the researchers for the detection of glucose, and , the ElecFET device has demonstrated measurement precision comparable to that of available technologies.

The ElecFET could have numerous applications in medicine and in the food processing industry. For example, the accurate determination of blood glucose levels is vital for diabetic patients. Lactate, which is found in sweat, is a physiological stress marker that indicates an athlete's state of fatigue, for example. Glutamate is a neurotransmitter that excites the central nervous system, and whose continuous analysis is necessary for diagnosing various neurological disorders such as Alzheimer's disease. In the food processing sector, lactate is a marker of all processes based on lactic fermentation, whereas glutamate is an umami taste vector. The range of molecules detected by the ElecFET could potentially be extended to all enzymes of the oxidase family, opening up numerous application possibilities.

Explore further: Researchers use voltammetry to probe the brain's chemistry

More information: Diallo, A.K. et al., Development of pH-based ElecFET biosensors for lactate ion detection, Biosensors and Bioelectronics, 40 (2013), p.291-296 DOI: 10.1016/j.bios.2012.07.063

Related Stories

Researchers use voltammetry to probe the brain's chemistry

October 16, 2012

(—Our brains are constantly awash in chemicals that serve as messengers, transporting signals from one neuron to another.  It's a really nifty system, although scientists still aren't clear on how, exactly, those ...

Adjusting acidity with impunity

December 22, 2009

( -- How do individual cells or proteins react to changing pH levels? Researchers at the MESA+ Institute for Nanotechnology at the University of Twente, The Netherlands, have developed a technique for ‘gently’ ...

Ultrasensitive biosensor promising for medical diagnostics

May 15, 2012

( -- Researchers have created an ultrasensitive biosensor that could open up new opportunities for early detection of cancer and "personalized medicine" tailored to the specific biochemistry of individual patients.

Detecting Cancer with Silica Nanoparticles

September 18, 2006

Tumor necrosis factor-alpha is a widely accepted biomarker for cancer, but the minute amounts of this protein circulating in blood makes detecting the molecule and measuring its concentration accurately a technological challenge.

Nano-tetherball biosensor precisely detects glucose

January 22, 2009

( -- Researchers have created a precise biosensor for detecting blood glucose and potentially many other biological molecules by using hollow structures called single-wall carbon nanotubes anchored to gold-coated ...

Recommended for you

Bacteria development marks new era in cellular design

December 11, 2017

Scientists at the universities of Kent and Bristol have built a miniature scaffold inside bacteria that can be used to bolster cellular productivity, with implications for the next generation of biofuel production.

Molecular beacon signals low oxygen with ultrasound

December 8, 2017

Areas of hypoxia, or low oxygen in tissue, are hallmarks of fast-growing cancers and of blockages or narrowing in blood vessels, such as stroke or peripheral artery disease. University of Illinois researchers have developed ...

Targeting cancer cells by measuring electric currents

December 8, 2017

EPFL researchers have used electrochemical imaging to take a step forward in mapping the distribution of biomolecules in tissue. This technology, which uses only endogenous markers – rather than contrast agents – could ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.