Quantum shortcut could speed up many quantum technologies

May 8, 2015 by Lisa Zyga report
A shortcut to adiabaticity (STA) offers a fast route to quantum state preparation, similar to how a toll road offers a fast route to a traveler’s destination; both shortcuts involve costs, but the costs are hopefully worth the time saved. (The image depicts a road sign produced by the Swedish Transport Agency.)

(Phys.org)—Quantum technologies come in a wide variety of forms, from computers, sensors, and cryptographic systems to simulations and imaging systems. But one thing that all current and future quantum systems have in common is the need to achieve reliable control over physical systems such as atoms or photons. A frequently used method to prepare quantum systems in the desired quantum state is a quantum adiabatic process, but these processes often take so long that environmental noise causes the quantum state to decohere and lose its "quantumness."

To speed up quantum state preparation and minimize decoherence, physicists have devised so-called "shortcuts to adiabaticity" (STA), which refer to any process that prepares quantum states in a shorter time than adiabatic processes without losing the benefits of being adiabatic. Originally developed for simple systems consisting of a single particle, STA has recently been extended to many-body systems, which are more relevant for applications. However, the implementation of STA in many-body systems is still very challenging due to the inherent complexity of these systems.

In a new paper published in Physical Review Letters, physicists Steve Campbell, et al., at Queen's University in Belfast, UK; the University of Palermo and Scuola Normale Superiore of Pisa in Italy; and the National University of Singapore have devised a new hybrid method for preparing quantum states for many-body systems that combines STA with optimal control. The main advantage of the new method is that it can achieve nearly perfect STA performance yet allows for significant simplification by not requiring complete knowledge of the underlying mechanisms. The method shows that it's possible to speed up quantum state preparation at a low enough cost to justify the quantum shortcut.

"Our work shows that a solution exists when the quantum many-body problem is of the Lipkin-Meshkov-Glick (LMG) class, which is a very interesting case that attracts a lot of attention from various quantum communities (the solid state, the , and the mathematical physics ones, to name a few)," Campbell told Phys.org. "Our way of solving the problem is basically a 'know-your-enemy' approach, where we exploit the symmetries inherent in the problem that we want to address (the LMG one) and take advantage of them to devise a successful quantum shortcut."

As the researchers explain, this quantum shortcut or STA can also be understood in terms of a driver looking for the fastest way to get to work.

"In a nutshell, our work can be understood through a simple layman analogy," Campbell said. "Suppose you want to drive your car through the freeway from home to your office, but you do not want to go through the traffic jam of Monday morning. You will surely get to your workplace, and you do not pay anything, but you will be very slow, and it will likely imply that only half of your morning duties will be attended.

"You thus decide to go through a shortcut, which goes through a road that, however, requires a fee to be driven through. Yes, you pay a bit, but you get precisely to the parking lot of your workplace, and in a much shorter time: plenty is done in the morning, your boss is happy, and gives you a pay raise, which in the end means that the toll you paid to get to work did not really matter.

"Take now all this into the quantum world. Your car is a quantum system, prepared in a state (you being at home) and having to be transformed into a new state (you at your office). You have two choices: you can do it infinitely slowly (going through the freeway traffic), or taking the quick shortcut (i.e., implementing a shortcut to adiabaticity [STA]) that will cost you a bit, in terms of energy, but will realize the desired transformation in a much faster way."

With a single person involved, the situation resembles a single-body problem. But, as Campbell continued, adding more commuters makes the situation more complicated and turns the situation into a many-body problem.

"Now, do the same thing when it's all of your colleagues who should get to your office at the same time, leaving their homes at the same time, and all facing the very same traffic issues," he said. "This is what we would call a many-body problem. It looks like a very difficult problem (you have to convince everybody to pay the toll!!), and indeed it is—let alone when you translate it to the quantum world. Indeed, while STA techniques are known and work for single-body problems, to date very little is known in the context of quantum many-body ones."

By showing that the STA approach can work for many-body systems, the new method could potentially have a wide variety of applications, as preparation is required for so many different future quantum technologies.

In the future, the researchers plan to further examine the true cost of the "toll," or exactly how much energy is need to implement an STA. They also plan to take the first steps toward building a quantum engine using this approach, in which many-body systems realize some thermodynamic cycles.

Explore further: Physicists gain new insights into the remote control of quantum systems

More information: Steve Campbell, et al. "Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model." Physical Review Letters. DOI: 10.1103/PhysRevLett.114.177206

Related Stories

Physicists design zero-friction quantum engine

September 16, 2014

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. But in a new study, ...

Glass fiber that brings light to standstill

April 8, 2015

Light is an extremely useful tool for quantum communication, but it has one major disadvantage: it usually travels at the speed of light and cannot be kept in place. A team of scientists at the Vienna University of Technology ...

Physicists show 'quantum freezing phenomenon' is universal

April 9, 2015

(Phys.org)—Physicists who work on quantum technologies are always looking for ways to manage decoherence, which occurs when a quantum system unavoidably interacts with the surrounding environment. In the past few years, ...

Recommended for you

Probing giant planets' dark hydrogen

June 23, 2016

Hydrogen is the most-abundant element in the universe. It's also the simplest—sporting only a single electron in each atom. But that simplicity is deceptive, because there is still so much we have to learn about hydrogen.

Genetic algorithms can improve quantum simulations

June 23, 2016

(Phys.org)—Inspired by natural selection and the concept of "survival of the fittest," genetic algorithms are flexible optimization techniques that can find the best solution to a problem by repeatedly selecting for and ...

Supercomputers on the trail of dark matter

June 24, 2016

Almost all mass on Earth, humans included, derives from the atomic nuclei. These nuclei consist mainly of protons and neutrons, also called nucleons. Each nucleon in turn is made of three constituent quarks. However, the ...

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

thingumbobesquire
not rated yet May 09, 2015
This article is like a black box tautology: I know no more than I did before...
swordsman
not rated yet May 09, 2015
A perfect example of the inability to define a "quantum". Suggest they go back and study how Planck derived his quantum theory, based to a large degree on probability theory.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.