Water-soluble silicon leads to dissolvable electronics

January 15, 2015 by Lisa Zyga feature
(a) Optical and SEM images of a transient CMOS circuit dissolving at various times over 42 days. (b) Optical images of an ultrathin CMOS circuit on a silk substrate dissolving over 16 hours. Both circuits are immersed in phosphate-buffered saline solution at 70 °C and pH 10. Credit: Yin, et al. ©2015 AIP Publishing LLC

(Phys.org)—Researchers working in a materials science lab are literally watching their work disappear before their eyes—but intentionally so. They're developing water-soluble integrated circuits that dissolve in water or biofluids in months, weeks, or even a few days. This technology, called transient electronics, could have applications for biomedical implants, zero-waste sensors, and many other semiconductor devices.

The researchers, led by John A. Rogers at the University of Illinois at Urbana-Champaign and Fiorenzo Omenetto at Tufts University, have published a study in a recent issue of Applied Physics Letters in which they analyzed the performance and dissolution times of various semiconductor materials.

The work builds on previous research, by the authors and others, which demonstrated that silicon—the most commonly used semiconductor material in today's —can dissolve in water. Although it would take centuries to dissolve bulk silicon, thin layers of silicon can dissolve in more reasonable times at low but significant rates of 5-90 nm/day. The silicon dissolves due to hydrolysis, in which water and silicon react to form silicic acid. Silicic acid is environmentally and biologically benign.

In the new study, the researchers analyzed the dissolution characteristics of and tungsten, which they used to fabricate two electronics devices: field-effect transistors and ring oscillators.

Under biocompatible conditions (37 °C, 7.4 pH), dissolution rates ranged from 1 week for the tungsten components, to between 3 months and 3 years for the silicon dioxide components. The dissolution rates can be controlled by several factors, such as the thickness of the materials, the concentration and type of ions in the solution, and the method used to deposit the silicon dioxide on the original substrate.

As shown in the microscope images, the circuits do not dissolve in a uniform, layer-by-layer mode, but instead some places dissolve more rapidly than others. This is due to mechanical fractures in the fragile circuits, which cause the solution to penetrate through the layers more in some locations than in others.

Although organic electronic materials are also often biodegradable, silicon-based electronics have the advantages of an overall higher performance and the use of complementary metal-oxide-semiconductor (CMOS) fabrication processes that allow for mass-production.

"The most significant finding is that there exist choices in materials, device designs and processing sequences that allow to be produced in conventional silicon fabrication facilities," Rogers told Phys.org. "The immediate consequence is a cost-effective, high-volume route to manufacturing."

Transient electronics could have a very wide range of novel applications, particular in the medical field. For example, they could be used to make catheters that dissolve; biodegradable sensors that monitor the kidney, heart, and lungs; and water-soluble electronics that monitor bacterial infections after surgery.

As for environmental applications, transient electronics could be used as sensors that transmit data from remote locations, and then degrade into the soil to eliminate waste.

The researchers plan to work toward these applications in the near future.

"We are working on building more advanced circuits, and doing so with commercial foundries, and on back-end assembly techniques that will allow these circuits to be deployed on a range of biodegradable polymer substrates," Rogers said.

Explore further: 'Transient electronics': Biocompatible electronic devices dissolve in body, environment (w/ Video)

More information: Lan Yin, et al. "Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node." Applied Physics Letters. DOI: 10.1063/1.4905321

Related Stories

Dissolvable silicon circuits and sensors

October 10, 2014

Electronic devices that dissolve completely in water, leaving behind only harmless end products, are part of a rapidly emerging class of technology pioneered by researchers at the University of Illinois at Urbana-Champaign. ...

New 'transient electronics' disappear when no longer needed

April 8, 2013

Scientists today described key advances toward practical uses of a new genre of tiny, biocompatible electronic devices that could be implanted into the body to relieve pain or battle infection for a specific period of time, ...

Tomorrow's degradable electronics

November 20, 2014

When the FM frequencies are removed in Norway in 2017, all old-fashioned radios will become obsolete, leaving the biggest collection of redundant electronics ever seen – a mountain of waste weighing something between 25,000 ...

Recommended for you

Nano-decoy lures human influenza A virus to its doom

October 25, 2016

To infect its victims, influenza A heads for the lungs, where it latches onto sialic acid on the surface of cells. So researchers created the perfect decoy: A carefully constructed spherical nanoparticle coated in sialic ...

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Nanofiber coating prevents infections of prosthetic joints

October 24, 2016

In a proof-of-concept study with mice, scientists at The Johns Hopkins University show that a novel coating they made with antibiotic-releasing nanofibers has the potential to better prevent at least some serious bacterial ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.