World's most complex crystal simulated

December 24, 2014
Michigan Engineering researchers simulated the most complex crystal structure ever - an icosahedral quasicrystal. Credit: Michael Engel

The most complicated crystal structure ever produced in a computer simulation has been achieved by researchers at the University of Michigan. They say the findings help demonstrate how complexity can emerge from simple rules.

Their "icosahedral quasicrystal" (eye-KO-suh-HE-druhl QUAZ-eye-cris-tahl) looks ordered to the eye, but has no repeating pattern. At the same time, it's symmetric when rotated, like a soccer ball with five-fold and six-fold patches.

This property, called icosahedral symmetry, is frequently found on small scales around a single point. It's in virus shells or buckyballs – molecules of 60 carbon atoms. But it is forbidden in a conventional crystal. Like trying to tile a bathroom floor with pentagons, icosahedra do not nicely fill space, said Michael Engel, a research investigator in the Department of Chemical Engineering and first author of a paper on the findings published in Nature Materials.

"An icosahedral quasicrystal is nature's way of achieving icosahedral symmetry in the bulk. This is only possible by giving up periodicity, which means order by repetition. The result is a highly complicated structure," Engel said.

Icosahedral quasicrystals, commonly found in metal alloys, earned the chemist who discovered them more than 30 years ago a Nobel Prize. But engineers are still searching for efficient ways to make them with other materials. Due to their high symmetry under rotation, they can have a property called a "." A photonic bandgap occurs when the spacing between the particles is similar to that of light. Particles arranged in this way could trap and route light coming from all directions.

A cross-section of the icosahedral quasicrystal simulated by University of MIchigan researchers. While the exotic solid has order and rotational symmetry, it does not have a repeating pattern. Credit: Michael Engel

"If icosahedral quasicrystals could be made from nano- and micro-meter sized particles, they could be useful in a variety of applications including communication and display technologies, and even camouflage," said Sharon Glotzer, the Stuart W Churchill Collegiate Professor of Chemical Engineering at U-M.

While these applications are tantalizing, they're very much speculation. The researchers say the most exciting aspect of the findings is the insight they provide into how icosahedral quasicrystals form.

"When researchers study quasicrystals in the lab, they typically lack direct information about where the atoms are. They look at how the materials scatter light to figure that out. No one has ever gotten one with icosahedral symmetry to self-assemble thermodynamically in a computer model that's not built by hand, and researchers have been trying for decades," Glotzer said.

The simulation will allow researchers for the first time to observe how icosahedral symmetry develops.

Patterns in the quasicrystal simulated by Michigan Engineering researchers reflect the Golden Ratio. The ratio was also found in the relationship of the distances of particle interactions. Credit: Michael Engel.

The U-M simulation was done using only one type of particle, which is unique. Typically, two or even three atomic elements are required to achieve a quasicrystal structure.

Even though the end product showed long-range order, the particles only interacted with those up to three particle-distances away. When the researchers looked closer, they found that the Golden Ratio governed those interactions. The Golden Ratio, which is about 1.61, is a mathematically and artistically important number that was first studied by the ancient Greeks. It's related to the Fibonacci Sequence – the simple progression of numbers beginning with 0 and 1 in which the next number is the sum of the previous two – so 0, 1, 1, 2, 3, 5, 8, 13, etc. It's visible in the arrangement of petals in flowers, seeds in a pinecone, branches in trees and spirals of nautilus shells, for example.

"These findings help answer fundamental questions that are important in all of nature: How do you get really complex arrangements of atoms and molecules from essentially local information? This is a beautiful example of something incredibly rich in structure emerging from very simple rules," Glotzer said.

A paper on the findings titled "Computational self-assembly of a one-component icosahedral quasicrystal" is published online in Nature Materials.

Explore further: Quasicrystal mystery unraveled with computer simulation

More information: "Computational self-assembly of a one-component icosahedral quasicrystal." Nature Materials 14, 109–116 (2015) DOI: 10.1038/nmat4152

Interactive visualization of the crystal: www.nature.com/nmat/journal/v14/n1/extref/nmat4152-s2.html

Related Stories

Quasicrystal mystery unraveled with computer simulation

March 6, 2008

The method to the madness of quasicrystals has been a mystery to scientists. Quasicrystals are solids whose atoms aren't arranged in a repeating pattern, as they are in ordinary crystals. Yet they form intricate patterns ...

Research shows potential for quasicrystals

March 20, 2013

(Phys.org) —Ever since their discovery in 1984, the burgeoning area of research looking at quasiperiodic structures has revealed astonishing opportunities in a number of areas of fundamental and applied research, including ...

Scientists discover new family of quasicrystals

June 10, 2013

(Phys.org) —Scientists at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered a new family of rare-earth quasicrystals using an algorithm they developed to help pinpoint them. Quasicrystalline materials ...

Local icosahedral order in metallic glasses

July 15, 2013

(Phys.org) —Metallic glasses are essentially a frozen, supercooled liquid. They are amorphous metals, often alloys, which are non-crystalline and therefore have a highly disordered atomic arrangement. They are true glasses ...

Recommended for you

Engineers discover a high-speed nano-avalanche

August 24, 2016

Charles McLaren, a doctoral student in materials science and engineering at Lehigh University, arrived last fall for his semester of research at the University of Marburg in Germany with his language skills significantly ...

Funneling fundamental particles

August 24, 2016

Neutrinos are tricky. Although trillions of these harmless, neutral particles pass through us every second, they interact so rarely with matter that, to study them, scientists send a beam of neutrinos to giant detectors. ...

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

NIST's compact gyroscope may turn heads

August 23, 2016

Shrink rays may exist only in science fiction, but similar effects are at work in the real world at the National Institute of Standards and Technology (NIST).

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Ozmandias
not rated yet Dec 26, 2014
I love that Fibonacci Sequence!!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.