Research shows potential for quasicrystals

March 20, 2013 by Ariel Duchene
Two-dimensional Penrose type quasicrystal made using only two tile shapes: a thick rhomb and a thin rhomb. The structure proposed by Roger Penrose lacks translational symmetry and exhibits five-fold rotational symmetry not allowed in regular crystals.

( —Ever since their discovery in 1984, the burgeoning area of research looking at quasiperiodic structures has revealed astonishing opportunities in a number of areas of fundamental and applied research, including applications in lasing and sensing. Quasiperiodic structures, or quasicrystals, because of their unique ordering of atoms and a lack of periodicity, possess remarkable crystallographic, physical and optical properties not present in regular crystals.

In the article "Optics of photonic ," in the March issue of Nature Photonics, Amit Agrawal, professor in the Syracuse University College of Engineering and Computer Science along with his colleagues from the University of Utah present the history of quasicrystals and how this area can open up numerous opportunities in fundamental optics research including possibilities for building smaller , performing lithography at a much smaller length scale and making more efficient optical devices that can be used for biosensing, or spectroscopy applications.

Up until their discovery, researchers including crystallographers, material scientists, physicists and engineers, only focused around two kinds of structures: periodic (e.g. a simple cubic lattice) and random (e.g. amorphous solids such as glass). are known for their predictable symmetry, both rotational and translational, and they were believed to be the only kinds of repeating structures that could occur in nature. From basic , these structures are only allowed to exhibit strict 2, 3, 4 or 6-fold rotational symmetry, i.e., upon rotation by a certain angle about a crystallographic axis, the shape would still look identical upon each rotation. It was not believed that there could be a structure that existed which violated these four symmetry rules. Random systems, the other big area of research, looks at amorphous or disordered media like gases.

The introduction of quasicrystals - an ordered structure that lacks periodicity, exhibits some properties similar to periodic structures (such as atomic ordering over large-length scales) while violates rotational symmetry rules associated with them (i.e., a quasicrystal can exhibit 5 or 8 fold rotational symmetry) - was an area initially met with resistance from the research community. Agrawal explores this transition from skepticism to the ultimate acceptance by a growing number of researchers exploring the potential of these unique structures.

Explore further: Quasicrystal mystery unraveled with computer simulation

Related Stories

Quasicrystal mystery unraveled with computer simulation

March 6, 2008

The method to the madness of quasicrystals has been a mystery to scientists. Quasicrystals are solids whose atoms aren't arranged in a repeating pattern, as they are in ordinary crystals. Yet they form intricate patterns ...

What do phasons look like?

June 6, 2012

( -- When illuminated by laser light, assorted colloidal particles can arrange themselves into highly ordered structures called quasicrystals. By changing the phases of the lasers, researchers can force the colloids ...

Recommended for you

Physicists explore a new recipe for heating plasma

August 22, 2017

In the quest for fusion energy, scientists have spent decades experimenting with ways to make plasma fuel hot and dense enough to generate significant fusion power. At MIT, researchers have focused their attention on using ...

Scientists accelerate airflow in mid-air

August 21, 2017

When a fan blows air across a room, the airflow typically decelerates and spreads out. Now in a new study, scientists have demonstrated the opposite: an airflow created by a carefully controlled ultrasound array can maintain ...

3-D particle tracking? There's an app for that

August 21, 2017

Using four low-cost smartphone cameras and some simple colored backlighting, KAUST researchers have dispensed with expensive research-grade camera equipment and dangerous lasers to construct a tomographic particle image velocimetry ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.