NASA is catalyst for hydrogen technology

October 22, 2014
NASA’s original intent was to make electricity generation more efficient for aircraft.

NASA answered a call to help the world's largest aerospace company develop a better way to generate electricity for its aircraft. Instead, it wound up helping a very small technology company to thrive.

Here's what happened.

Aerospace mega-giant Boeing approached NASA with the idea of using fuel cells to provide electricity for its planes instead of the onboard generators commonly in use. Those generators run on the same that powers a plane's flight, but burning jet fuel to drive a small generator is inefficient.

If a small, lightweight system were developed to extract hydrogen and from the jet fuel (a process known as "reforming") and use those gases in a solid-oxide fuel cell, much less jet fuel would be required to generate the same amount of electricity—a win-win for Boeing (which would save money on fuel) and the environment (which would see less carbon dioxide blown into the atmosphere). NASA agreed to help.

As a group of engineers and technicians at NASA's Glenn Research Center began working on the project in 2004, they learned that a tiny company called Catacel was developing a catalyst with the potential to benefit their fuel-cell system. In the reforming part of the process, steam and methane are consumed in a chemical reaction that produces hydrogen and carbon monoxide. A catalyst expedites the chemical reaction without ultimately being consumed itself. And Catacel appeared to be on the road to a better catalyst.

Catacel couldn't afford the hardware needed to test and continue developing its catalyst and Glenn had such a test bed up and running, along with years of experience in the area. So in early 2005, they teamed up.

The stars aligned

"Test rigs of that nature—they just aren't around anywhere, even today," said William Whittenberger, president of Catacel. "They had the right kind of facility there, there was interest in reforming, there was this grant. So the stars kind of aligned for us."

NASA is catalyst for hydrogen technology
Catacel's catalysts use coated metal foil instead of the traditional ceramic pellets. An adaptation with a different material coating the foil is being developed for carbon-capture applications.

The testing and development of Catacel's catalyst went well and was completed in mid-2006. "We determined that Catacel's catalyst had about a two times higher heat-transfer rate than the commercial ceramic catalyst," said Thomas Tomsik, lead engineer on the Glenn team. A higher heat-transfer rate means the reforming process can take place at a lower temperature, saving as much as 35 percent on fuel and extending the life of the reformer.

The Glenn team designed the fuel-cell system for Boeing simultaneously. By late 2006, it, too, was ready for testing. But the Boeing project was canceled before the testing stage could begin. "It's frustrating at times," Tomsik said, "especially with something that you really believe in and enjoy working on. But those are things that we, at my level, have no control over."

Although the aviation application that the Glenn engineers had in mind when they began working with Catacel had fallen through, there were still plenty of other uses to which the new catalyst could be put. Hydrogen is used in a variety of industries, some of which use so much of the gas that it isn't practical or economical to truck it to their plants. Instead, they make their own, using reformers like the one that would have been used in the Boeing system, but at a larger commercial scale (and without the carbon monoxide needed for the prospective airplane fuel cells).

Catacel's new catalyst could make the hydrogen-production process more efficient for these industries, reducing their carbon footprint while saving them money on fuel. So the little company ran with it.

Hydrogen tech explodes

"Catacel just exploded as far as company growth," Tomsik said. "It was one of my success stories in terms of working with somebody outside in the real world. They're selling it all over the world now."

NASA and Catacel collaborated again, less than a year ago. "We're trying to use a computer to model the flows and understand how the thing really works," Whittenberger said. "And of course there are a lot of smart people at NASA. I mean they build spaceships, right? There are people there that do that sort of modeling work all the time and have very good expertise. They gave us a lot of guidance.

"I'm their poster guy here," he continued. "I've gone out three times now to talk to people about how well that went so they can do some more of it."

In early September 2014, Catacel was acquired by a British company called Johnson Matthey. "Our new parent is the largest steam-methane reforming-catalyst producer in the world," said Don Lensner, Catacel's director of sales and marketing. He expects the giant company to enable Catacel to upscale its operations to serve the largest hydrogen-consuming industries, which had been out of reach before this development.

Catacel is also part of a project under the Department of Energy to adapt its technology for use in carbon-capture devices.

And what about the idea for aircraft, on which the Glenn team worked so hard and which got this whole ball rolling in the first place? "My experience, working here the last 25 years, is that it always comes back," Tomsik said, laughing. "That technology will be revisited in five to 10 years from now, I guarantee you!"

The first element

Hydrogen is the most common substance in the universe. It makes the sun shine and is used in the manufacture of ammonia, methanol, refined oil, steel, silicon chips, glass and processed food, among other things.

But if you want some here on Earth, you have to work for it. That's because the gas is so lightweight that whatever hydrogen Earth may once have had has long ago floated away into space. But there's still a lot of hydrogen bound up with other elements, like oxygen (forming water) and carbon (making hydrocarbons, such as methane). Hydrogen is very useful to a variety of industries, so millions of tons of it are extracted every year from the methane in natural gas.

Explore further: 'Salted' catalysts for chemical energy storage: Basic alkali-metal salts improve catalyst for methanol steam reforming

Related Stories

Enhancing fuel cell efficiency

October 6, 2014

Researchers in the renewable energy sector are working hard in this respect. In this context, researchers in the UPV/EHU's Department of Applied Chemistry are exploring possible solutions to improve the efficiency of mobile ...

Recommended for you

New method developed for producing some metals

August 25, 2016

The MIT researchers were trying to develop a new battery, but it didn't work out that way. Instead, thanks to an unexpected finding in their lab tests, what they discovered was a whole new way of producing the metal antimony—and ...

Force triggers gene expression by stretching chromatin

August 26, 2016

How genes in our DNA are expressed into traits within a cell is a complicated mystery with many players, the main suspects being chemical. However, a new study by University of Illinois researchers and collaborators in China ...

New electrical energy storage material shows its power

August 24, 2016

A powerful new material developed by Northwestern University chemist William Dichtel and his research team could one day speed up the charging process of electric cars and help increase their driving range.

Bio-inspired tire design: Where the rubber meets the road

August 24, 2016

The fascination with the ability of geckos to scamper up smooth walls and hang upside down from improbable surfaces has entranced scientists at least as far back as Aristotle, who noted the reptile's remarkable feats in his ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.