Thermonuclear X-ray bursts on neutron stars set speed record

Aug 29, 2014
Thermonuclear X-ray bursts on neutron stars set speed record
X-ray bursts. Credit: David A. Hardy

A new study of thermonuclear X-ray bursts on neutron stars reveals that, on very rare occasions, shells can be expelled at relativistic speeds - up to 30% of the speed of light. These velocities are the highest ever measured for a cosmic thermonuclear event, including novae and thermonuclear supernovae. This phenomenon, discovered in only 0.1 second worth of data in 40 years of space-based X-ray astronomy, sheds new light on how nuclear flames spread over surfaces of neutron stars. The research results have been published in Astronomy & Astrophysics.

In our galaxy there are about a hundred that regularly burst in X-rays. When another star happens to be in the neighborhood of the neutron star it may lose some of its hydrogen/helium atmosphere to it. This material on the surface of the neutron star subsequently ignites a thermonuclear runaway reaction resulting in a minutes-long X-ray burst. The bursts are so luminous that they are easily visible from anywhere in the galaxy, provided an X-ray detector is used in space because X-rays cannot penetrate the earth's atmosphere.

X-ray bursts do not usually result in explosions. Gravity is so strong on the neutron star that any debris is firmly held tight to the surface. Only when a burst is powerful enough (in 20% of all cases), the pressure exerted by the radiation may be able to compensate for gravity. In such a case the atmosphere is briefly lifted off the star and then pulled back again. The new study has now identified two bursts, out of more than ten thousand thus far detected, that are so powerful that a shell, visible for only a few tens of milliseconds, is flung loose from the star at 10 to 30% the speed of light.

This figure captures the essence of the discovery measurement. It is a graph of the X-ray brightness with time, for the initial five seconds of one of the two bursts studied. The essence lies in the red spike precursing the blue main part of the burst lasting minutes. The spike is very brief (a few tens of milliseconds; shortest of all more than ten thousand bursts detected since the discovery in the 1970s) and brighter than the main part. This points to a relativistic expansion of a shell at 10-30% of the speed of light.

This figure captures the essence of the discovery measurement. It is a graph of the X-ray brightness with time, for the initial five seconds of one of the two bursts studied. The essence lies in the red spike precursing the blue main part of the burst lasting minutes. The spike is very brief (a few tens of milliseconds; shortest of all more than ten thousand bursts detected since the discovery in the 1970s) and brighter than the main part. This points to a relativistic expansion of a shell at 10-30% of the speed of light.

Record

"The found bulk velocities are a record for nuclear-powered phenomena," says SRON-researcher Jean in 't Zand. "They are faster than the maxima measured in other stellar nuclear explosions (novae and type Ia supernovae). Presumably X-ray bursts provide us a window to the initial phase of thermonuclear runaways which is not available for (super)novae, since those are always discovered after that phase is over."

The exceptional outflows seen in these two bursts go hand in hand with very fast ignitions of the complete neutron star surface – within less than 1 millisecond. In 't Zand: "This is very quick. It means that the nuclear flame spreads across the neutron star at velocities close to 0.1 times the speed of light. This puts interesting constraints on the theory of ignition and how the nuclear reaction chain works. Normal flame propagation mechanisms may not be viable in this regime. Instead, the neutron star atmosphere may be ignited in a so-called auto-ignition regime. In any case, this observational result is expected to stimulate new theoretical work."

Neutron stars

One can imagine a neutron star as a failed black hole. Both are remnants of stars at least a few times heavier than the Sun, collapsed during a supernova after exhaustion of the nuclear fuel that kept them shining. Neutron stars are lighter than black holes, which makes them capable of making a full stop of the collapse just short of vanishing behind the event horizon, at a diameter of merely a few tens of kilometers. This implies that they have visible surfaces with unparalleled strong gravity, some ten thousand billion times stronger than on earth. Throwing matter at it has a dramatic effect. That matter quickly piles up in a 1 m thick layer with such high pressures that a stellar sized H-bomb, powered by thermonuclear fusion, is ignited. The fusion lasts a fraction of a second and heats up the atmosphere to tens of millions of degrees. The subsequent cooling is visible as a minutes-long X-ray burst. The X-ray burst phenomenon was first discovered at SRON in 1975, with the first satellite built in the Netherlands (ANS). The measurements for the present study were carried out with NASA's Rossi X-ray Timing Explorer.

Explore further: Birth of black hole kills the radio star

More information: "Relativistic outflow from two thermonuclear shell flashes on neutron stars." J. J. M. in 't Zand, L. Keek and Y. Cavecchi. A&A Volume 568, August 2014 dx.doi.org/10.1051/0004-6361/201424044

add to favorites email to friend print save as pdf

Related Stories

Birth of black hole kills the radio star

Dec 20, 2013

Astronomers led by a Curtin University researcher have discovered a new population of exploding stars that "switch off" their radio transmissions before collapsing into a Black Hole.

Earth's gold came from colliding dead stars

Jul 17, 2013

We value gold for many reasons: its beauty, its usefulness as jewelry, and its rarity. Gold is rare on Earth in part because it's also rare in the universe. Unlike elements like carbon or iron, it cannot ...

Chandra captures galaxy sparkling in X-rays

Jun 03, 2014

(Phys.org) —Nearly a million seconds of observing time with NASA's Chandra X-ray Observatory has revealed a spiral galaxy similar to the Milky Way glittering with hundreds of X-ray points of light.

Recommended for you

'Blockbuster' science images

Nov 21, 2014

At this point, the blockbuster movie Interstellar has created such a stir that one would almost have to be inside a black hole not to know about it. And while the science fiction thriller may have taken some ...

Estimating the magnetic field of an exoplanet

Nov 20, 2014

Scientists developed a new method which allows to estimate the magnetic field of a distant exoplanet, i.e., a planet, which is located outside the Solar system and orbits a different star. Moreover, they ...

It's filamentary: How galaxies evolve in the cosmic web

Nov 20, 2014

How do galaxies like our Milky Way form, and just how do they evolve? Are galaxies affected by their surrounding environment? An international team of researchers, led by astronomers at the University of ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

FineStructureConstant
not rated yet Aug 31, 2014
This figure captures the essence of the discovery measurement. It is a graph of the X-ray brightness with time
- somebody forgot to include the figure in the article... Otherwise, good report.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.