How lizards regenerate their tails: Researchers discover genetic 'recipe'

Aug 20, 2014
The green anole lizard (Anolis carolinensis), when caught by a predator, can lose its tail and then grow it back. Researchers have discovered the genetic 'recipe' as to how this happens. Credit: Joel Robertson

By understanding the secret of how lizards regenerate their tails, researchers may be able to develop ways to stimulate the regeneration of limbs in humans. Now, a team of researchers from Arizona State University is one step closer to solving that mystery. The scientists have discovered the genetic "recipe" for lizard tail regeneration, which may come down to using genetic ingredients in just the right mixture and amounts.

An interdisciplinary team of scientists used next-generation molecular and computer analysis tools to examine the turned on in tail regeneration. The team studied the regenerating tail of the green anole lizard (Anolis carolinensis), which when caught by a predator, can lose its tail and then grow it back.

The findings are published today in the journal PLOS ONE.

"Lizards basically share the same toolbox of genes as humans," said lead author Kenro Kusumi, professor in ASU's School of Life Sciences and associate dean in the College of Liberal Arts and Sciences. "Lizards are the most closely-related animals to humans that can regenerate entire appendages. We discovered that they turn on at least 326 genes in specific regions of the regenerating tail, including genes involved in embryonic development, response to hormonal signals and wound healing."

Other animals, such as salamanders, frog tadpoles and fish, can also regenerate their tails, with growth mostly at the tip. During tail regeneration, they all turn on genes in what is called the 'Wnt pathway'—a process that is required to control stem cells in many organs such as the brain, hair follicles and blood vessels. However, lizards have a unique pattern of tissue growth that is distributed throughout the tail.

Arizona State University researchers discovered that green anole lizards turn on at least 326 genes in specific regions of the regenerating tail, including genes involved in embryonic development, response to hormonal signals and wound healing. Credit: Joel Robertson

"Regeneration is not an instant process," said Elizabeth Hutchins, a graduate student in ASU's molecular and cellular biology program and co-author of the paper. "In fact, it takes lizards more than 60 days to regenerate a functional tail. Lizards form a complex regenerating structure with cells growing into tissues at a number of sites along the tail."

"We have identified one type of cell that is important for ," said Jeanne Wilson-Rawls, co-author and associate professor with ASU's School of Life Sciences. "Just like in mice and humans, lizards have satellite cells that can grow and develop into skeletal muscle and other tissues."

"Using next-generation technologies to sequence all the genes expressed during regeneration, we have unlocked the mystery of what genes are needed to regrow the lizard ," said Kusumi. "By following the genetic recipe for regeneration that is found in , and then harnessing those same genes in human cells, it may be possible to regrow new cartilage, muscle or even spinal cord in the future."

The researchers hope their findings will help lead to discoveries of new therapeutic approaches to , repairing birth defects, and treating diseases such as arthritis.

Explore further: Do salamanders hold the key to limb regeneration?

Related Stories

Sequencing the genome of salamanders

Aug 20, 2014

University of Kentucky biologist Randal Voss is sequencing the genome of salamanders. Though we share many of the same genes, the salamander genome is massive compared to our own, about 10 times as large.

Recommended for you

Bacterial tenants in fungal quarters

15 hours ago

Ludwig Maximilian University of Munich researchers have sequenced the genome of a bacterial symbiont hosted by a mycorrhizal fungus. Analysis of the symbiont's genetic endowment reveals previously unknown ...

First step towards global attack on potato blight

May 28, 2015

European researchers and companies concerned with the potato disease phytophthora will work more closely with parties in other parts of the world. The first move was made during the biennial meeting of the ...

Bacteria study could have agricultural impact

May 28, 2015

Wichita State University microbiology professor Mark Schneegurt and ornithology professor Chris Rogers have discovered that one of North America's most common migratory birds – the Dark-eyed Junco – carries ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.