Planting imperfections at specific spots within diamond lattice could advance quantum computing

Aug 05, 2014
This is a schematic of the process to localize NV centers in 3-D. The researchers blasted carbon ions through holes to create vacancies and heated the diamond to make the vacancies mobile within the crystal. NV centers could form in the nitrogen-doped layer below where the holes were placed. Credit: F.J. Heremans and D. Awschalom/U. Chicago and K. Ohno/UCSB

By carefully controlling the position of an atomic-scale diamond defect within a volume smaller than what some viruses would fill, researchers have cleared a path toward better quantum computers and nanoscale sensors. They describe their technique in a paper published in the journal Applied Physics Letters, from AIP Publishing.

David Awschalom, a physicist at the Institute for Molecular Engineering at the University of Chicago, and his colleagues study a technologically useful diamond defect called a nitrogen vacancy (NV) center. NV centers consist of a nitrogen atom adjacent to a vacant spot that replaces two carbon atoms in the diamond crystal, leaving an unpaired electron. Researchers can use a property of the unpaired electron known as its spin to store and transmit at room temperature.

Qubits and Quantum Sensors

NV centers are attractive candidates for qubits, the quantum equivalent of a classical computing bit. A single NV center can also be used for completely different applications, such as measuring temperature, as well as to image electric and magnetic fields on the nanometer-scale by placing it at the tip of a diamond-based scanning probe.

A primary obstacle to further exploiting NV centers for practical and nanoscale sensing devices lies in the difficulty of placing the centers within what Awschalom calls the functional "sweet spots" of the devices. Another challenge is increasing the NV center density without sacrificing their spin lifetimes, which must remain long in order to extract the most useful information from the system.

Awschalom and his colleagues have developed a new way to create NV centers that could help overcome both these challenges.

That's the Spot

The key to the team's new approach is to create the nitrogen and vacancy defects separately, Awschalom said. First, the team grew a layer of nitrogen-doped crystal within a diamond film. The researchers kept the nitrogen layer extremely thin by reducing the growth rate of the film to approximately 8 nanometers/hour. The nanometer-scale nitrogen-doped layer constrains the possible location of the NV centers in the depth direction.

A surface confocal scan of a diamond sample shows the NV centers in yellow. A single NV center is circled in red. The inset scanning electron microscope image shows holes in a separate sample as tiny dimples. Credit: F.J. Heremans and D. Awschalom/U. Chicago and K. Ohno/UCSB

Secondly, the researchers created a mask to cover the film, leaving only pinprick holes. They blasted carbon ions through the holes to create vacancies and heated the diamond to make the vacancies mobile within the crystal. NV centers could form in the nitrogen-doped layer below where the holes were placed.

Using this approach the team successfully localized NV centers within a cavity approximately 180 nanometers across—a volume small enough to be compatible with many diamond-based nanostructures used in sensing devices and experimental quantum information systems.

The localized NV centers could also hold a specific spin for longer than 300 microseconds. This so-called spin coherence time was an order of magnitude better than that achieved by other 3-D localization methods. The longer spin lifetime means the NV centers can detect smaller magnetic signals and hold quantum information for longer.

One of the team's goals for using their new technique is to measure the nuclear spins of hydrogen atoms – one of the tiniest magnetic signals – within a biological molecule. The research could reveal new insights into how important biological functions like photosynthesis work. "Our research impacts diverse fields of science and technology," Awschalom said. "Technological advancements always open new avenues of scientific research."

Explore further: Diamond defect boosts quantum technology

More information: "Three-dimensional localization of spins in diamond using 12C implantation," by Kenichi Ohno, F. Joseph Heremans, Charles F. de las Casas, Bryan A. Myers, Benjamín J. Alemán, Ania C. Bleszynski Jayich, and David D. Awschalom, Applied Physics Letters August 5, 2014. DOI: 10.1063/1.4890613 . http://scitation.aip.org/content/aip/journal/apl/105/5/10.1063/1.4890613

add to favorites email to friend print save as pdf

Related Stories

Diamond defect boosts quantum technology

Feb 04, 2014

New research shows that a remarkable defect in synthetic diamond produced by chemical vapor deposition allows researchers to measure, witness, and potentially manipulate electrons in a manner that could lead ...

Diamond imperfections pave the way to technology gold

Nov 04, 2013

(Phys.org) —From supersensitive detections of magnetic fields to quantum information processing, the key to a number of highly promising advanced technologies may lie in one of the most common defects in ...

A new spin in diamonds for quantum technologies

Dec 20, 2011

(PhysOrg.com) -- To explore the future potential of diamonds in quantum devices, researchers from Macquarie University have collaborated with the University of Stuttgart and University of Ulm in Germany towards ...

Recommended for you

Controlling light on a chip at the single-photon level

Dec 16, 2014

Integrating optics and electronics into systems such as fiber-optic data links has revolutionized how we transmit information. A second revolution awaits as researchers seek to develop chips in which individual ...

Fraud-proof credit cards possible with quantum physics

Dec 15, 2014

Credit card fraud and identify theft are serious problems for consumers and industries. Though corporations and individuals work to improve safeguards, it has become increasingly difficult to protect financial ...

An Interview with Thomas Vidick on quantum code cracking

Dec 15, 2014

Quantum computers, looked to as the next generation of computing technology, are expected to one day vastly outperform conventional computers. Using the laws of quantum mechanics—the physics that governs ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.