Discovery about wound healing key to understanding cell movement

August 6, 2014
This image depicts a wound in the process of healing.The drawstring fragments along the wound edge are shown in bright yellow, the cell extensions associated with crawling are red, and the cell nuclei are blue. Credit: Ester Anon

Research by a civil engineer from the University of Waterloo is helping shed light on the way wounds heal and may someday have implications for understanding how cancer spreads, as well as why certain birth defects occur.

Professor Wayne Brodland is developing computational models for studying the mechanical interactions between . In this project, he worked with a team of international researchers who found that the way wounds knit together is more complex than we thought. The results were published this week in the journal, Nature Physics.

"When people think of , they probably think of bridges and roads, not the human body," said Professor Brodland. "Like a number of my colleagues, I study structures, but ones that happen to be very small, and under certain conditions they cause cells to move. The models we build allow us to replicate these movements and figure out how they are driven."

When you cut yourself, a scar remains, but not so in the cells the team studied. The researchers found that an injury closes by cells crawling to the site and by contraction of a drawstring-like structure that forms along the wound edge. They were surprised to find that the drawstring works fine even when it contains naturally occurring breaks.

This knowledge could be the first step on a long road towards making real progress in addressing some major health challenges.

"The work is important because it helps us to understand how cells move. We hope that someday this knowledge will help us to eliminate malformation birth defects, such as , and stop from spreading," said Professor Brodland.

More information: Nature Physics,

Related Stories

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...

Biomedical imaging at one-thousandth the cost

November 23, 2015

MIT researchers have developed a biomedical imaging system that could ultimately replace a $100,000 piece of a lab equipment with components that cost just hundreds of dollars.

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.