From stronger Kevlar to better biology

Jul 14, 2014 by Angela Herring
Assistant professor Marilyn Minus has received a grant to expand her nanomaterial templating process to design better synthetic collagen fibers and better flame-retardant coatings. Credit: Mary Knox Merrill

Place two large, sturdy logs in a streambed, and they will help guide the water in a particular direction. But imagine if the water started mimicking the rigidity of the logs in addition to flowing along them. That's essentially what happens in a directed assembly method developed by Marilyn Minus, an assistant professor in Northeastern's Department of Mechanical and Industrial Engineering.

Instead of logs, Minus uses tiny carbon nanotubes and her "water" can be just about any kind of . So far, she's used the approach to develop a polymer composite material that is stronger than Kevlar yet much less expensive and lighter weight. In that case, the polymer not only follows the direction of the nanotube logs but also mimics their uniquely strong properties.

With funding from a new CAREER award from the National Science Foundation, Minus is now expanding this work to incorporate more polymer classes: flame retardant materials and biological molecules.

"With the flame retardants, we want the high-temperature polymer and nanotube to interact, not necessarily act like the nanotubes," Minus said. Essentially, she wants the two materials to "communicate" by passing heat between one another, thereby increasing the temperature threshold of the and allowing them to last even longer. "The nanomaterial can grab that heat and conduct it away, and it basically saves that polymer from burning up too quickly," she explained. "The polymer we're using can already withstand quite high temperatures; we're just pushing it even further."

In the case of collagen—the first biological molecule to which Minus has applied her method—Minus hopes the approach will allow the nanotubes to lend their rigidity to the system. Inside the body, collagen molecules organize themselves into a complex matrix that supports the structure of every one of our cells. But outside the body, researchers have had major challenges trying to reliably recreate this matrix.

If scientists could make collagen work outside the body the same way it does inside, it could provide an invaluable platform for testing drugs, understanding how tissues work, and even shedding light on the origins of a variety of diseases, Minus said.

Based on her prior research, she has found that the key to success in taking this approach is matching the size and geometry of the carbon nanoparticles she uses with that of the in question. For instance, collagen molecules are about 300 nanometers long and 1.5 nanometers in diameter, so she'll want to find a nanotube that roughly meets those dimensions. She'll also want to use for this application rather than the other carbon forms she has at her disposal: graphene, graphite, fullerenes, or even small nanocarbon particles—each of which offers a unique structure.

"We're trying to change the entropy of the system in order to get the polymers to organize themselves around the nanomaterials," Minus said. "Then you should be able to get this effect."

Explore further: Improvement in polymers for aviation

add to favorites email to friend print save as pdf

Related Stories

The new superstrong

Jul 11, 2013

In today's market for high performance fibers, used for applications such as bulletproof vests, manufacturers have only four options: Kevlar, Spectra, Dyneema, and Zylon. Made from polymers such as polyethylene, ...

Improvement in polymers for aviation

Feb 25, 2014

We live surrounded by polymers and today, rather than come up with new polymers, there is a tendency to modify them in order to obtain new applications. Carbon nanotubes have excellent mechanical properties, ...

Carbon nanotubes promise improved flame-resistant coating

Jan 15, 2014

Using an approach akin to assembling a club sandwich at the nanoscale, National Institute of Standards and Technology (NIST) researchers have succeeded in crafting a uniform, multi-walled carbon-nanotube-based ...

Engineers synthesize antibodies with carbon nanotubes

Nov 25, 2013

MIT chemical engineers have developed a novel way to generate nanoparticles that can recognize specific molecules, opening up a new approach to building durable sensors for many different compounds, among ...

Recommended for you

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jul 14, 2014
not rated yet Jul 14, 2014
Based on the preview, I thought this was going to be about using air channels to use the kinetic energy of the bullets to temporarily strengthen the vest. It would be useless after it was used in an area, but could offer much higher transitory resistant strength. Basically like embedded airbags to slow and spread the bullets energy transfer.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.