How speed restricts evolutionary change of the vertebral column in mammals

Jul 14, 2014
This is a skeleton of a juvenile specimen of an Asian elephant with a stiff vertebral column, due to the long thorax with many ribs, the short lumbar ribless region (behind the thorax) and the dorsal spines that are all backward pointing. Credit: Joris van Alphen, jorisvanalphen.com

One of the riddles of mammal evolution explained: the strong conservation of the number of trunk vertebrae. Researchers of the Naturalis Biodiversity Center and the University of Utah show that this conservation is probably due to the essential role of speed and agility in survival of fast running mammals.

They measured variation in vertebrae of 774 individual mammal skeletons of both fast and slow running species. The researchers found that a combination of developmental and biomechanical problems prevents evolutionary change in the number of trunk vertebrae in fast running and agile . In contrast, these problems barely affect slow and sturdy mammals. The study will appear next Monday, 14 July 2014 in PNAS.

The mammal vertebral column is highly variable among species, reflecting adaptations to a wide range of lifestyles, from burrowing in moles to flying in bats. Yet, as a rule, the number of trunk vertebrae varies little between most mammal species. The vertebral column and its high evolutionary potential is considered to be of central importance for the evolution of vertebrates, which is why the constancy is both puzzling and important. The authors propose, on biomechanical and developmental grounds that evolutionary change is virtually impossible in fast running and agile mammals, but only marginally affects slow and sturdy mammals. The rationale is that several mutations are necessary to change the number of trunk vertebrae, with single mutations leading to irregularly shaped transitional lumbosacral vertebrae that are incompletely and asymmetrically fused to the sacrum. These irregular lumbosacral joints reduce flexibility, thus severely hampering running and jumping. Their observations indeed show that selection against these initial changes is strong in fast and agile mammals and weak in slower and sturdier ones.

This is a skeleton of a Thomson's gazella with a flexible vertebral column, due to the short thorax, long lumbar region and the dorsal spines that are anteriorly backward pointing and posteriorly forward pointing, allowing dorsal flexion of the spine. Credit: Joris van Alphen, jorisvanalphen.com

In total, 774 skeletons of 90 different species were analysed. The skeletons belonged to collections of 9 European natural history museums including Naturalis Biodiversity Center, Leiden.

"The stiffness of the back of a mammal is key to whether evolutionary change is possible or not", said Frietson Galis, one of the authors of the study. "`the locomotion of slow mammals with a stiff back is only marginally affected by irregular lumbosacral joints, but for fast running mammals such joints are fatal " continued Clara ten Broek another author of the study.

"A combination of developmental, biomechanical and evolutionary insights and a large dataset were necessary to solve this puzzle of mammal evolution", said Frietson Galis.

Authors Frietson Galis (left) and Clara ten Broek are investigating the vertebral column of a Thomson's gazelle. Credit: Eelco Kruidenier, Naturalis Biodiversity Center.

"The stiffness of the back of a mammal is key to whether is possible or not", said Frietson Galis, researcher at Naturalis Biodiversity Center and one of the authors of the study. "the locomotion of slow mammals with a stiff back is only marginally affected by irregular lumbosacral joints, but for fast running mammals such joints are fatal" continued Clara ten Broek another author of the study.

"A combination of developmental, biomechanical and evolutionary insights and a large dataset were necessary to solve this puzzle of mammal evolution", said Frietson Galis.

Explore further: Dramatic decline to mammal populations reach critical point

More information: Fast running restricts evolutionary change of the vertebral column in mammals, PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1401392111

Related Stories

New species of Hero Shrew found in equatorial Africa

Jul 24, 2013

Scientists at Chicago's Field Museum and international collaborators have described a new species of Hero Shrew – the mammal with the most bizarre lower spine on Earth. The interlocking vertebrae of the Hero Shrew render ...

Recommended for you

Scientists discover new 'transformer frog' in Ecuador

13 hours ago

It doesn't turn into Prince Charming, but a new species of frog discovered in Ecuador has earned the nickname "transformer frog" for its ability to change its skin from spiny to smooth in five minutes.

Longer DNA fragments reveal rare species diversity

14 hours ago

A challenge in metagenomics is that the more commonly used sequencing machines generate data in short lengths, while short-read assemblers may not be able to distinguish among multiple occurrences of the ...

Scientists say polar bears won't thrive on land food

14 hours ago

A group of researchers say polar bears forced off melting sea ice will not find enough food to replace their current diet of fat-laden marine mammals such as seals, a conclusion that contradicts studies indicating ...

The vital question: Why is life the way it is?

15 hours ago

The Vital Question: Why is life the way it is? is a new book by Nick Lane that is due out on April 23rd. His question is not one for a static answer but rather one for a series of ever sharper explanations—explanations that a ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.