Entanglement between particle and wave-like states of light resembles Schrodinger's cat experiment (Update)

Jul 15, 2014 by Lisa Zyga feature
Illustration of the proposed scheme to generate hybrid entanglement of light (a single photon and a coherent wave-like state of light). Credit: Jeong, et al. ©2014 Nature Photonics

(Phys.org) —While entangling cats with atoms is not exactly an active area of research in any physics lab today (as far as anyone knows), many physicists are working on a close analogy of Schrödinger's cat experiment. That is, they are developing methods to entangle classical objects (analogous to the cat) with quantum particles (like an individual atom).

In a new paper published as the July 2014 cover article in Nature Photonics, physicists Hyunseok Jeong, et al., at institutions in South Korea, Italy, and Australia, have devised and experimentally demonstrated a novel scheme to generate between quantum and classical (or "particle-like" and "wave-like") states of light. This study marks the first time that physicists have generated entanglement between a single photon and a coherent wave-like state of light.

According to the scientists, this hybrid entanglement can be considered as the closest analogy of Schrödinger's Gedankenexperiment realized so far. It has practical applications, too, as it provides a new type of qubit (a hybrid qubit) that can be used for efficient quantum computation.

In previous attempts to generate entanglement between a single photon and coherent wave-like state of light, the major obstacle was the requirement of a strong and noiseless nonlinear interaction between photons; this was extremely difficult because photons seldom interact with each other.

In the new study, the researchers introduced a new scheme to generate hybrid entanglement that is experimentally accessible. The new scheme is based on superposition. Similar to how Schrödinger's cat is both alive and dead at the same time before anyone looks, the photons also occupy two states at the same time.

Rather than being dead and alive, however, the states correspond to the long and short arms of the interferometer through which each photon travels. It's as if a photon traveled through both arms at the same time. By performing a procedure that erases the information regarding which arm the photons travelled through, the physicists could entangle a photon with a wave-like state that they call a photon-added coherent state.

Because the new state is essentially a superposition including both particle and wave components, it can be viewed as a new type of qubit. Usually, a qubit consists of a particle that is in a superposition of two quantum states. The new idea here is that a qubit can consist of a quantum (or particle-like) state and a classical (or wave-like) one, which could effectively combine the intrinsic advantages of both. In this way, a hybrid qubit could offer unique advantages for quantum computing and quantum teleportation.

"Using hybrid qubits, it is possible to implement processing (such as quantum teleportation and quantum computing operations) with both high success probability and high fidelity," Hyunseok Jeong at Seoul National University told Phys.org. "It was difficult to achieve this goal merely with particle-like qubits or with wave-like qubits. With particle-like qubits, the fidelity of quantum can be made high but the success probability becomes low, and it is exactly the opposite with the wave-like qubits. Using the hybrid qubits, one can combine the advantages of both approaches so that quantum information processing can be efficiently performed."

In the future, the researchers plan to increase the size of the classical objects used in the entangled state, which will make them more practical for applications.

"At the moment, we have performed a proof-of-principle demonstration," said coauthor Marco Bellini at the Istituto Nazionale di Ottica (INO-CNR) and the University of Firenze, both in Florence, Italy. "In our experiment, the classical part of the entangled state (the analogue of the 'alive' and 'dead' superposition state of the Schrödinger's cat) is the superposition between two weak laser pulses with opposite phases. Since they contain just a few photons on average, they are very small classical objects indeed (very different from a macroscopic cat), so our next plans are to find ways of generating hybrid entangled states where the classical component can be made larger. Besides the fundamental interest related to the paradoxes of quantum mechanics, this will also make them more useful for applications in ."

In the same issue of Nature Photonics, a second paper by Olivier Morin, et al., was also published on a new method to create hybrid entanglement between particle-like and wave-like optical qubits. The work was performed independently from the first paper, and was led by Professor Julien Laurat at the Laboratoire Kastler Brossel in Paris.

Here, the researchers demonstrated similar hybrid entanglement, but performed state preparation remotely. They showed that a distance of more than 80 km is possible between the particle-like (quantum) part and the wave-like (cat) part of the generated state. This ability opens a path to realizing heterogeneous long-distance quantum networks.

Using this method, the researchers generated a hybrid state whose "cat part" is 10 times larger than that generated in the method used in the other paper. The work marks an important step toward the realization of wave-like states of increasingly larger size.

Explore further: Micro-macro entangled 'cat states' could one day test quantum gravity

More information: Hyunseok Jeong, et al. "Generation of hybrid entanglement of light." Nature Photonics. DOI: 10.1038/nphoton.2014.136

Olivier, Morin, et al. "Remote creation of hybrid entanglement between particle-like and wave-like optical qubits." Nature Photonics. DOI: 10.1038/nphoton.2014.137

add to favorites email to friend print save as pdf

Related Stories

Scientists track quantum errors in real time

Jul 14, 2014

(Phys.org) —Scientists at Yale University have demonstrated the ability to track real quantum errors as they occur, a major step in the development of reliable quantum computers. They report their results ...

Record quantum entanglement of multiple dimensions

Mar 27, 2014

An international team directed by researchers from the Austrian Academy of Sciences, with participation from the Universitat Autònoma de Barcelona, has managed to create an entanglement of 103 dimensions with only two photons. ...

Viewing deeper into the quantum world

Jun 11, 2014

One of the important tasks for quantum physics researchers and engineers is designing more sensitive instruments to study the tiny fields and forces that govern the world we live in. The most precise measuring ...

A quantum logic gate between light and matter

Apr 10, 2014

Scientists at Max Planck Institute of Quantum Optics, Garching, Germany, successfully process quantum information with a system comprising an optical photon and a trapped atom.

Recommended for you

Physicists design zero-friction quantum engine

8 hours ago

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. ...

Fluid mechanics suggests alternative to quantum orthodoxy

Sep 12, 2014

The central mystery of quantum mechanics is that small chunks of matter sometimes seem to behave like particles, sometimes like waves. For most of the past century, the prevailing explanation of this conundrum ...

The sound of an atom has been captured

Sep 11, 2014

Researchers at Chalmers University of Technology are first to show the use of sound to communicate with an artificial atom. They can thereby demonstrate phenomena from quantum physics with sound taking on ...

The quantum revolution is a step closer

Sep 11, 2014

A new way to run a quantum algorithm using much simpler methods than previously thought has been discovered by a team of researchers at the University of Bristol. These findings could dramatically bring ...

User comments : 7

Adjust slider to filter visible comments by rank

Display comments: newest first

EyeNStein
not rated yet Jul 15, 2014
Surely the whole point of "the cat experiment" is it has TWO wave states and NO particle state until someone makes a measurement.
However this is an interesting experiment as it includes TIME effects due to the "short path/long path" component in the superposition. I've long wondered how superimposed state collapse would be affected by time frame differences (e.g. the Twins paradox effect.)
Clues to the integration of general relativity with quantum theory might be found.
Whydening Gyre
not rated yet Jul 15, 2014
Clues.... Always just another clue...
George_Rajna
Jul 15, 2014
This comment has been removed by a moderator.
EyeNStein
not rated yet Jul 15, 2014
WG: Clues upon clues is how this works:-
It took Torrichelli experiments with mercury to fill in clues as to why vacuum states were inexplicably uncommon down on earth. It took Faraday much fiddling with magnets, coils and wires to point towards the inter-relatedness of electricity and magnetism. It took Einstein to realise what Brownian motion "clues" meant for the nature of matter. It took Michelson and Morley's measurements of 'Aether' free lightspeed, to give clues which would point to special then general relativity.
Whydening Gyre
not rated yet Jul 16, 2014
Eye... was just using a line from the movie "National Treasure"...
EyeNStein
not rated yet Jul 16, 2014
WG
Sorry: missed that movie reference.
swordsman
not rated yet Jul 16, 2014
The "particle" portion is time variant, while the wave portion is space variant. Glitzy names just add to the confusion. Add "quantum" or "Einstein" or "entanglement", and things get entangles.
swordsman
not rated yet Jul 21, 2014
Perhaps everything in the universe consists of forms of waves. That I could believe. Forget about "entanglement". The theories, however, may be rather entangled.