Physicists propose way to use quantum bidding in bridge

Jun 17, 2014 by Bob Yirka report
Physicists propose way to use quantum bidding in bridge
Cards and bidding for bridge. An example of cards and bidding for the W and E partners. Credit: Phys. Rev. X 4, 021047

(Phys.org) —A team of physicists in Europe, led by Marcin Pawlowski, has proposed a way to use entangled quantum particles to improve the odds of winning in the game of bridge. As the team notes in their paper published in Physical Review X, their proposition appears to be the first example of using quantum enhancement of information transfer as it applies to a real-world (non-physics) application.

Entanglement is where pairs of are generated where their quantum state is no longer defined independently—instead a comes to exist that defines them as a single unit. The team in Europe has taken this concept and applied it to the game of bridge, increasing the odds of winning by a pair of players that successfully employs the strategy they've devised.

Bridge is a card game played by teams of paired individuals—successful players learn to communicate meaningfully with one another to convey information each needs to improve their hand, without being specific—that's against the rules. In this new scenario, Pawlowski, et al, suggest that in addition to a handful of cards, players are given the means to receive (and measure) one particle of an entangled pair from their mate—doing so they note, would not violate the rules of bridge as cannot be used to send messages.

Use of entanglement in would only come up during certain parts of play, such as when hands are dealt, and players on a team are trying to determine what cards their partner has that could be used to fill in the gaps in their own hand. Here team members would use combined measurements on the along with information provided via coded bids to come up with partial information to help them better understand each other's cards. Such a strategy isn't foolproof, of course, it would help up the odds of winning rather than provide a clear path to victory. Pawlowski and his team have calculated that using their strategy would increase the probability of one team member guessing what cards their mate is holding from 87.5% to 89.5%, a 2 percent gain, but one that could for a team playing tournament style, mean a decided advantage.

Explore further: Scientists open a new window into quantum physics with superconductivity in LEDs

More information: Quantum Bidding in Bridge, Phys. Rev. X 4, 021047 – Published 12 June 2014. journals.aps.org/prx/abstract/… 03/PhysRevX.4.021047

ABSTRACT
Quantum methods allow us to reduce communication complexity of some computational tasks, with several separated partners, beyond classical constraints. Nevertheless, experimental demonstrations of this have thus far been limited to some abstract problems, far away from real-life tasks. We show here, and demonstrate experimentally, that the power of reduction of communication complexity can be harnessed to gain an advantage in a famous, immensely popular, card game—bridge. The essence of a winning strategy in bridge is efficient communication between the partners. The rules of the game allow only a specific form of communication, of very low complexity (effectively, one has strong limitations on the number of exchanged bits). Surprisingly, our quantum technique does not violate the existing rules of the game (as there is no increase in information flow). We show that our quantum bridge auction corresponds to a biased nonlocal Clauser-Horne-Shimony-Holt game, which is equivalent to a 2→1 quantum random access code. Thus, our experiment is also a realization of such protocols. However, this correspondence is not complete, which enables the bridge players to have efficient strategies regardless of the quality of their detectors.

add to favorites email to friend print save as pdf

Related Stories

Record quantum entanglement of multiple dimensions

Mar 27, 2014

An international team directed by researchers from the Austrian Academy of Sciences, with participation from the Universitat Autònoma de Barcelona, has managed to create an entanglement of 103 dimensions with only two photons. ...

Recommended for you

Exotic state of matter propels quantum computing theory

18 hours ago

So far it exists mainly in theory, but if invented, the large-scale quantum computer would change computing forever. Rather than the classical data-encoding method using binary digits, a quantum computer would process information ...

Quantum leap in lasers brightens future for quantum computing

Jul 22, 2014

Dartmouth scientists and their colleagues have devised a breakthrough laser that uses a single artificial atom to generate and emit particles of light. The laser may play a crucial role in the development of quantum computers, ...

Boosting the force of empty space

Jul 22, 2014

Vacuum fluctuations may be among the most counter-intuitive phenomena of quantum physics. Theorists from the Weizmann Institute (Rehovot, Israel) and the Vienna University of Technology propose a way to amplify ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

George_Rajna
not rated yet Jun 18, 2014
Quantum Computing and Entanglement: https://www.acade...nglement
George_Rajna
not rated yet Jun 19, 2014
While physicists are continually looking for ways to unify the theory of relativity, which describes large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer scientists are searching for technologies to build the quantum computer using Quantum Information.
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle Duality and the electron's spin also, building the Bridge between the Classical and Quantum Theories.
The Planck Distribution Law of the electromagnetic oscillators explains the electron/proton mass rate and the Weak and Strong Interactions by the diffraction patterns. The Weak Interaction changes the diffraction patterns by moving the electric charge from one side to the other side of the diffraction pattern, which violates the CP and Time reversal symmetry.
https://www.acade...nglement