Natural response to slow global warming increases forest carbon uptake

June 2, 2014
Summer turns to fall: view over the forest from the eddy-covariance tower. Credit: Chris Vogel

( —A two-decade study of carbon storage changes within North American forests provides new evidence of the direct impact of climate change on ecosystem function, opening questions for how Australian ecosystems are responding.

Researcher Dr Trevor Keenan led the study across temperate forests of North America, where a strong trend of seasonal changes indicates an ecological adaption to extend the 'green' seasons, thus enhancing ecosystem .

The study shows increased carbon uptake, for both an earlier spring and later autumn. This constitutes a positive response to climate change, and is serving to slow the rate of warming.

"In contrast to previous suggestions, this study shows that carbon uptake through photosynthesis increased considerably more than carbon release through respiration. We observed a strong trend for both an earlier spring and later autumn," said Dr Keenan.

Researchers assessed changes of , combining long-term ground observations of the timing of spring and autumn, satellite observations, and ecosystem-scale carbon dioxide flux measurements, along with 18 terrestrial biosphere models.

"The timing of plant life cycle (phenological) events exerts a strong control over ecosystem function, and leads to multiple feedbacks to the climate system.

"The terrestrial biosphere models tested misrepresent the temperature sensitivity of phenology, and thus the effect on carbon uptake. Our analysis of the temperature-phenology-carbon coupling suggests a current and possible future enhancement of forest carbon uptake due to changes in phenology."

This study means researchers could directly observe the effect is having on ecosystem function in North America. To date, little still is known about how Australian ecosystems have responded to global warming, but Keenan and Macquarie's world-leading environmental sciences research team will continue to examine these questions.

Explore further: Losing more than we gain from autumn warming in the north

More information: "Net carbon uptake has increased through warming-induced changes in temperate forest phenology," Nature Climate Change, 2014, Trevor F. Keenan, Josh Gray, Mark A. Friedl, Michael Toomey, Gil Bohrer, David Y. Hollinger, J. William Munger, John O'Keefe, Hans Peter Schmid, Ian Sue Wing, Bai Yang, Andrew D. Richardson.

Related Stories

Losing more than we gain from autumn warming in the north

January 2, 2008

An international study investigating the carbon sink capacity of northern terrestrial ecosystems discovered that the duration of the net carbon uptake period (CUP) has on average decreased due to warmer autumn temperatures.

Changes in Greenland landscape affect carbon balance sheet

October 1, 2013

Warming temperatures in the Arctic are changing the tundra from a landscape dominated by grasses to one increasingly dominated by woody shrubs. In addition to affecting the habitat of local wildlife such as caribou and musk ...

Permafrost thaw exacerbates climate change

March 21, 2014

The climate is warming in the arctic at twice the rate of the rest of the globe creating a longer growing season and increased plant growth, which captures atmospheric carbon, and thawing permafrost, which releases carbon ...

Recommended for you

Can Paris pledges avert severe climate change?

November 26, 2015

More than 190 countries are meeting in Paris next week to create a durable framework for addressing climate change and to implement a process to reduce greenhouse gases over time. A key part of this agreement would be the ...

Amazon deforestation leaps 16 percent in 2015

November 28, 2015

Illegal logging and clearing of Brazil's Amazon rainforest increased 16 percent in the last year, the government said, in a setback to the aim of stopping destruction of the world's greatest forest by 2030.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.