Researchers find evidence of speedy core formation in solar system planetesimals

June 6, 2014 by Bob Yirka report
Planetary core formation. Credit: Speed metal, Science 6 June 2014.

(Phys.org) —A combined team of researchers from Germany, Switzerland and the U.S. has found evidence of faster than thought core formation of planetesimals in our solar system. In their paper published in the journal Science, the team describes how they came up with a new approach to using tungsten isotope dating in a way that overcame the problem of cosmic rays affecting accuracy. Tim Elliot offers a Perspective piece in the same issue delving further into the work by the team and explains how the new findings are likely to lead to better dating for planetary development in general.

Scientists believe approximately 4.6 billion years ago, our solar system was little more than a star surrounded by a . That cloud eventually coalesced into a proto-planetary disk which eventually coalesced further into . Planets and moons and other bodies in the solar system came about as a result. But, one thing that has puzzled space scientists was the rate at which the cores of the planetesimals formed, or put another way, how soon after the formation of solar system, did the cores start to form? To come up with a good approximation, the researchers looked to existing iron meteorites—they are believed to been the creative force behind core formation.

To determine the age of five existing iron meteorites, the researchers used tungsten radioactive isotope dating, an approach used before. Such prior efforts were hobbled in their accuracy, however, by the impact of over time. To get around that problem, the researchers used platinum isotope compositions. Doing so allowed the researchers to calculate that core formation of early planetesimals likely began as early as 100,000 years to 300,000 years after the formation of the solar system.

These findings help explain why the materials that made up the bodies currently in our weren't blown away by the sun—previous estimates suggested took up to twenty million years, enough time to push such materials beyond our stars' gravitational pull. With such a short formation time, however, the cores of the developing planetesimals would have formed before they were pushed too far out, allowing them to be captured by the tug of the sun's gravity.

Explore further: The Earth and Moon formed later than previously thought

More information: Protracted core formation and rapid accretion of protoplanets, Science 6 June 2014: Vol. 344 no. 6188 pp. 1150-1154 DOI: 10.1126/science.1251766

ABSTRACT
Understanding core formation in meteorite parent bodies is critical for constraining the fundamental processes of protoplanet accretion and differentiation within the solar protoplanetary disk. We report variations of 5 to 20 parts per million in 182W, resulting from the decay of now-extinct 182Hf, among five magmatic iron meteorite groups. These 182W variations indicate that core formation occurred over an interval of ~1 million years and may have involved an early segregation of Fe-FeS and a later segregation of Fe melts. Despite this protracted interval of core formation, the iron meteorite parent bodies probably accreted concurrently ~0.1 to 0.3 million years after the formation of Ca-Al–rich inclusions. Variations in volatile contents among these bodies, therefore, did not result from accretion at different times from an incompletely condensed solar nebula but must reflect local processes within the nebula.

Related Stories

The Earth and Moon formed later than previously thought

June 7, 2010

The Earth and Moon were created as the result of a giant collision between two planets the size of Mars and Venus. Until now it was thought to have happened when the solar system was 30 million years old or approx. 4,537 ...

Solar System genealogy revealed by meteorites

August 29, 2012

(Phys.org)—The stellar environment of our Solar System at its birth is poorly known, as it has accomplished some twenty revolutions around the Galactic centre since its formation 4.5 billion years ago. Matthieu Gounelle ...

A rare snapshot of a planetary construction site

October 24, 2013

(Phys.org) —Planets are formed in disks of gas and dust around nascent stars. Now, combined observations with the compound telescope ALMA and the Herschel Space Observatory have produced a rare view of a planetary construction ...

How Earth was watered

February 28, 2014

Early Earth's accidental deluge via water-carrying comets has long been a stumbling block for those interested in life on other planets.

Recommended for you

Ceres image: The lonely mountain

August 25, 2015

NASA's Dawn spacecraft spotted this tall, conical mountain on Ceres from a distance of 915 miles (1,470 kilometers).

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Dawn spacecraft sends sharper scenes from Ceres

August 25, 2015

The closest-yet views of Ceres, delivered by NASA's Dawn spacecraft, show the small world's features in unprecedented detail, including Ceres' tall, conical mountain; crater formation features and narrow, braided fractures.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

tadchem
not rated yet Jun 06, 2014
"A combined team ... has found evidence of faster than thought core formation of planetesimals".
Just what is the Speed of Thought?
Or should this read "A combined team ... has found evidence of core formation of planetesimals faster than believed before?"

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.