Plant models for crop breeding of the future

Jun 25, 2014
Figure 1. FISH images of a mitotic prometaphase cell from a Tr4S plant carrying a minichromosome, mini4S. (a) The 180 bp repeats in green. (b) The 5SrDNA in red and the 18S rDNA in green. Arrows are mini4S. Scale bar=5 μm

Minichromosomes have been extensively used as tools for revealing the functional structures of eukaryotic chromosomes. In the most popular model plant, Arabidopsis thaliana, however, only six different minichromosomes have been found or created to date, due to their extremely small sizes that limit detection by optical microscopy.

This review article summarizes the structure and stability of all the minichromosomes that Minoru Murata and colleagues at Okayama University have isolated since 2006, and describes their interesting features.

Minichromosomes vary from 1.7 Mb to 8.4 Mb in length and are much shorter than authentic chromosomes (25.3 Mb to 38.0 Mb). Linear and circular minichromosomes have been identified, and both types are maintained as experimental lines (Fig. 1). Intriguingly, most of the circular, ring-shaped minichromosomes in Arabidopsis are relatively stable at mitosis and transmissible to the next generation, regardless of the centromere form (dicentric or monocentric).

Plant models for crop breeding of the future
Figure 2. An outline of the method for generating plant artificial ring chromosomes.

Recently, a ring minichromosome was artificially generated by a combination of the DNA sequence-specific recombination system, Cre/LoxP, and the DNA transposon system, Activator/Dissociation (Fig. 2, Murata et al. 2013). This artificial ring chromosome, AtARC1, has several advantages over the previously reported minichromosomes as a chromosome vector. Hence, Murata has proposed applying this method of generating plant artificial to important crops for breed improvement in future.

Explore further: It looks like rubber but isn't

More information: The complete paper is available online: link.springer.com/article/10.1… %2Fs10577-014-9421-0

add to favorites email to friend print save as pdf

Related Stories

Chromosome centromeres are inherited epigenetically

Nov 03, 2011

Centromeres are specialised regions of the genome, which can be identified under the microscope as the primary constriction in X-shaped chromosomes. The cell skeleton, which distributes the chromosomes to ...

Lice genomes: Pieces of a new puzzle

Mar 30, 2009

Parents and school nurses take note. Lice are a familiar nuisance around the world and vectors of serious diseases, such as epidemic typhus, in developing regions. New research indicates that lice may actually ...

It looks like rubber but isn't

Mar 21, 2014

The experimental and numerical study of the behaviour of polymers in concentrated solutions is a line of research that is still highly active. In the past, it enabled us to understand why materials like rubber ...

Physical reason for chromosome shape discovered

Jan 14, 2014

Researchers from the Universitat Autònoma de Barcelona have determined why metaphase chromosomes have their characteristic elongated cylindrical shape. The results show that this morphology is related to ...

Recommended for you

Living in the genetic comfort zone

13 hours ago

The information encoded in the DNA of an organism is not sufficient to determine the expression pattern of genes. This fact has been known even before the discovery of epigenetics, which refers to external ...

Better genes for better beans

18 hours ago

Some of the most underappreciated crops could soon become the most valuable tools in agriculture with new research from the Centre for Underutilised Crops at the University of Southampton. Coordinator Mark Chapman has created ...

Aggressive plant fungus threatens wheat production

19 hours ago

The spread of exotic and aggressive strains of a plant fungus is presenting a serious threat to wheat production in the UK, according to research published in Genome Biology. The research uses a new survei ...

A taxi ride to starch granules

20 hours ago

Plant scientists at ETH have discovered a specific protein that significantly influences the formation of starch in plant cells. The findings may be useful in the food and packaging industries.

Lager yeast ancestors were full of eastern promise

21 hours ago

There are few drinks as iconic as a 'pint of the black stuff'. It might, therefore, surprise beer connoisseurs to learn that the DNA of the all-important brewing yeast – the building blocks of the perfect Stout – is the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.