Plant models for crop breeding of the future

Jun 25, 2014
Figure 1. FISH images of a mitotic prometaphase cell from a Tr4S plant carrying a minichromosome, mini4S. (a) The 180 bp repeats in green. (b) The 5SrDNA in red and the 18S rDNA in green. Arrows are mini4S. Scale bar=5 μm

Minichromosomes have been extensively used as tools for revealing the functional structures of eukaryotic chromosomes. In the most popular model plant, Arabidopsis thaliana, however, only six different minichromosomes have been found or created to date, due to their extremely small sizes that limit detection by optical microscopy.

This review article summarizes the structure and stability of all the minichromosomes that Minoru Murata and colleagues at Okayama University have isolated since 2006, and describes their interesting features.

Minichromosomes vary from 1.7 Mb to 8.4 Mb in length and are much shorter than authentic chromosomes (25.3 Mb to 38.0 Mb). Linear and circular minichromosomes have been identified, and both types are maintained as experimental lines (Fig. 1). Intriguingly, most of the circular, ring-shaped minichromosomes in Arabidopsis are relatively stable at mitosis and transmissible to the next generation, regardless of the centromere form (dicentric or monocentric).

Plant models for crop breeding of the future
Figure 2. An outline of the method for generating plant artificial ring chromosomes.

Recently, a ring minichromosome was artificially generated by a combination of the DNA sequence-specific recombination system, Cre/LoxP, and the DNA transposon system, Activator/Dissociation (Fig. 2, Murata et al. 2013). This artificial ring chromosome, AtARC1, has several advantages over the previously reported minichromosomes as a chromosome vector. Hence, Murata has proposed applying this method of generating plant artificial to important crops for breed improvement in future.

Explore further: Sex chromosomes—why the Y genes matter

More information: The complete paper is available online: link.springer.com/article/10.1007%2Fs10577-014-9421-0

Related Stories

Chromosome centromeres are inherited epigenetically

Nov 03, 2011

Centromeres are specialised regions of the genome, which can be identified under the microscope as the primary constriction in X-shaped chromosomes. The cell skeleton, which distributes the chromosomes to ...

Lice genomes: Pieces of a new puzzle

Mar 30, 2009

Parents and school nurses take note. Lice are a familiar nuisance around the world and vectors of serious diseases, such as epidemic typhus, in developing regions. New research indicates that lice may actually ...

It looks like rubber but isn't

Mar 21, 2014

The experimental and numerical study of the behaviour of polymers in concentrated solutions is a line of research that is still highly active. In the past, it enabled us to understand why materials like rubber ...

Physical reason for chromosome shape discovered

Jan 14, 2014

Researchers from the Universitat Autònoma de Barcelona have determined why metaphase chromosomes have their characteristic elongated cylindrical shape. The results show that this morphology is related to ...

Recommended for you

Sex chromosomes—why the Y genes matter

4 hours ago

Several genes have been lost from the Y chromosome in humans and other mammals, according to research published in the open access journal Genome Biology. The study shows that essential Y genes are rescue ...

Better mouse model enables colon cancer research

17 hours ago

Every day, it seems, someone in some lab is "curing cancer." Well, it's easy to kill cancer cells in a lab, but in a human, it's a lot more complicated, which is why nearly all cancer drugs fail clinical ...

How to get high-quality RNA from chemically complex plants

May 26, 2015

Ask any molecular plant biologist about RNA extractions and you might just open up the floodgates to the woes of troubleshooting. RNA extraction is a notoriously tricky and sensitive lab procedure. New protocols out of the ...

Plant fertility—how hormones get around

May 26, 2015

Researchers at Tokyo Institute of Technology have identified a transporter protein at the heart of a number of plant processes associated with fertility and possibly aging.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.