Researchers develop three-step process for building fractal nanostructures

May 26, 2014 by Kimm Fesenmaier

Fancy Erector Set? Nope. The elaborate fractal structure shown at right (with a close-up below) is many, many times smaller than that and is certainly not child's play. It is the latest example of what Julia Greer, professor of materials science and mechanics, calls a fractal nanotruss—nano because the structures are made up of members that are as thin as five nanometers (five billionths of a meter); truss because they are carefully architected structures that might one day be used in structural engineering materials.

Greer's group has developed a three-step process for building such very precisely. They first use a direct laser writing method called two-photon lithography to "write" a three-dimensional pattern in a polymer, allowing a laser beam to crosslink and harden the polymer wherever it is focused. At the end of the patterning step, the parts of the polymer that were exposed to the laser remain intact while the rest is dissolved away, revealing a three-dimensional scaffold. Next, the scientists coat the with a continuous, very thin layer of a material—it can be a ceramic, metal, metallic glass, semiconductor, "just about anything," Greer says. In this case, they used alumina, or aluminum oxide, which is a brittle ceramic, to coat the scaffold. In the final step they etch out the from within the structure, leaving a hollow architecture.

Taking advantage of some of the size effects that many display at the nanoscale, these nanotrusses can have unusual, desirable qualities. For example, intrinsically brittle materials, like ceramics, including the alumina shown, can be made deformable so that they can be crushed and still rebound to their original state without global failure.

Credit: L. Meza, L. Montemayor, N. Clarke, J. Greer/Caltech

"Having full control over the architecture gives us the ability to tune material properties to what was previously unattainable with conventional monolithic materials or with foams," says Greer. "For example, we can decouple strength from density and make materials that are both strong (and tough) as well as extremely lightweight. These structures can contain nearly 99 percent air yet can also be as strong as steel. Designing them into fractals allows us to incorporate hierarchical design into material architecture, which promises to have further beneficial properties."

The members of Greer's group who helped develop the new fabrication process and created these nanotrusses are graduate students Lucas Meza and Lauren Montemayor and Nigel Clarke, an undergraduate intern from the University of Waterloo.

Explore further: Could future spaceships be built with artificial 'bone'?

add to favorites email to friend print save as pdf

Related Stories

New light on novel additive manufacturing approach

Apr 11, 2014

(Phys.org) —For nearly a century, electrophoretic deposition (EPD) has been used as a method of coating material by depositing particles of various substances onto the surfaces of various manufactured items. ...

Recommended for you

Researchers use oxides to flip graphene conductivity

23 hours ago

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

Gold 'nano-drills'

Jan 22, 2015

Spherical gold particles are able to 'drill' a nano-diameter tunnel in ceramic material when heated. This is an easy and attractive way to equip chips with nanopores for DNA analysis, for example. Nanotechnologists ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

mikael_murstam
not rated yet May 27, 2014
nanobots :D yay

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.