Nanoscale heat flow predictions

May 7, 2014

Physicists are now designing novel materials with physical properties tailored to meet specific energy consumption needs. Before these so-called materials-by-design can be applied, it is essential to understand their characteristics, such as heat flow. Now, a team of Italian physicists has developed a predictive theoretical model for heat flux in these materials, using atom-scale calculations.

The research, carried out by Claudio Melis and colleagues from the University of Cagliary, Italy, is published in the European Physical Journal B. Their findings could have implications for optimising the thermal budget of nanoelectronic devices—which means they could help dissipate the total amount of generated by electron currents—or in the production of energy through thermoelectric effects in novel nanomaterials.

The authors relied on large-scale to investigate nanoscale and determine the corresponding physical characteristics, which determine thermal conductivity. Traditional atomistic calculation methods involve a heavy computational workload, which sometimes prevents their application to systems large enough to model the experimental structural complexity of real samples.

Instead, Melis and colleagues adopted a method called approach equilibrium molecular dynamics (AEMD), which is robust and suitable for representing large systems. Thus, it can use simulations to deliver trustworthy predictions on thermal transport. The authors investigated the extent to which the reliability of the AEMD method results is affected by any implementation issues.

In addition, they applied the method to thermal transport in nanostructured silicon, a system of current interest with high potential impact on thermoelectric technology, using simulations of unprecedented size. Ultimately, the model could be applied to semiconductors used as high-efficiency thermoelectrics, and to graphene nanoribbons used as heat sinks for so-called ultra large scale integration devices, such as computer microprocessors.

Explore further: New insights into how materials transfer heat could lead to improved electronics

More information: C. Melis, R. Dettori, S. Vandermeulen and L. Colombo (2014), Calculating thermal conductivity in a transient conduction regime: theory and implementation, European Physical Journal B, DOI: 10.1140/epjb/e2014-50119-0

Related Stories

Graphene nanoribbons as electronic switches

April 8, 2014

One of graphene's most sought-after properties is its high conductivity. Argentinian and Brazilian physicists have now successfully calculated the conditions of the transport, or conductance mechanisms, in graphene nanoribbons. ...

Solving a mystery of thermoelectrics

April 29, 2014

Materials that can be used for thermoelectric devices—those that turn a temperature difference into an electric voltage—have been known for decades. But until now there has been no good explanation for why just a few ...

Recommended for you

Gold nanomembranes resist bending in new experiment

October 9, 2015

The first direct measurement of resistance to bending in a nanoscale membrane has been made by scientists from the University of Chicago, Peking University, the Weizmann Institute of Science and the Department of Energy's ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.