Going green with algae

May 30, 2014

Once known only as the slimy scourge of backyard ponds and lakes, algae is emerging as a superhero in the race for cleaner and renewable energy resources. But this hero is not without its Achilles' heel: Although its proliferation across water bodies might make it appear invincible, algae is actually fragile – vulnerable to fluctuations in weather and temperature – limiting commercial growers and researchers alike in their selection of growing systems and locations.

But a new, outdoor system at the University of Dayton Research Institute has been producing a high volume of algae since its installation in the summer of 2013, even through this especially harsh Ohio winter.

"This is a fully automated, closed system designed to operate 24/7, 365, regardless of the weather," said Sukh Sidhu, head of the Research Institute's energy technologies and materials division. "Our goal was to design and build an economical and efficient system that could be transported anywhere, easily assembled and operate in any climate, and we've done just that."

The system – a scaled-up version of an indoor research system still operating in a Research Institute lab – is less costly to operate than similar systems, but is already producing algae at a target rate established by the Department of Energy, Sidhu said.

"This is all about cleaner air, cleaner water and cleaner energies," Sidhu said. "Algae feeds on carbon dioxide and converts it to a highly desirable oil, which accounts for as much as 70 percent of the organism's body weight in some strains. So we can capture carbon dioxide from stacks of coal boilers and other combustion processes before it's released into the atmosphere and run it through algae growing systems. We consider this a far better alternative for dealing with CO2 emissions than geosequestration, where is pumped deep into the earth."

In turn algae oil can be extracted and, along with the proteins and carbohydrates that also make up the body of algae, used to create renewable resources for biofuel.

Because algae also needs nitrogen and phosphorus to survive, it can remove those elements from municipal and industrial wastewater before it's discharged into rivers and lakes, reducing the need for expensive treatments typically used to clean wastewater. It can also be used to capture fertilizers in agricultural runoff, then used as a fertilizer itself.

The Research Institute has been performing research, testing and development of algae and algae-growing systems for pollution control and alternative energies since 2009 under funding from the Air Force Research Laboratory Materials and Manufacturing Directorate. Initial research was focused on testing varieties of algae and light and other growing conditions for optimal production, as well as best methods of extracting oil.

"We discovered that there are no 'best strains' of algae, but that the key factors to high yield are environmental – factors such as weather and temperature, which can be so unpredictable," Sidhu said. "That's why most systems are open, such as natural or man-made ponds, and found in warmer climates.

And that's why our system is different. It will operate well in any location, regardless of season or climate."

There are other significant differences, Sidhu said. Aside from being more cost efficient, the Research Institute's growing process is greener – in the environmental sense – than most systems, which use chemical fertilizer as a nutrient source for the algae.

"Producing algae with fertilizer is expensive and leaves a huge carbon footprint. We use livestock and chicken manure – the same type of nutrient source responsible for the blooms at Grand Lake St. Mary's Ohio and other lakes affected by ," Sidhu said.

Sidhu said his research team studied a number of closed tubular growing systems in addition to performing their own research before developing the new system, which includes proprietary design modifications engineered by program principal investigator Moshan Kahandawala.

After demonstrating the technology, the next step will be commercialization, Sidhu said.

Explore further: Environmentally friendly methods for controlling algae in lakes and reservoirs

Related Stories

Biofuel from human urine

Sep 30, 2013

Micro-algae can grow on undiluted human urine. This offers opportunities for new water purification methods and perhaps even for converting urine into usable chemical substances and biofuels.

NASA showcases method to grow algae-based biofuels

Apr 18, 2012

NASA recently showcased the latest research and technology development a method to grow algae, clean wastewater, capture carbon dioxide and ultimately produce feedstock for refining biofuels without competing ...

Recommended for you

First step towards global attack on potato blight

7 hours ago

European researchers and companies concerned with the potato disease phytophthora will work more closely with parties in other parts of the world. The first move was made during the biennial meeting of the ...

Bacteria study could have agricultural impact

9 hours ago

Wichita State University microbiology professor Mark Schneegurt and ornithology professor Chris Rogers have discovered that one of North America's most common migratory birds – the Dark-eyed Junco – carries ...

Sex chromosomes—why the Y genes matter

20 hours ago

Several genes have been lost from the Y chromosome in humans and other mammals, according to research published in the open access journal Genome Biology. The study shows that essential Y genes are rescue ...

Better mouse model enables colon cancer research

May 27, 2015

Every day, it seems, someone in some lab is "curing cancer." Well, it's easy to kill cancer cells in a lab, but in a human, it's a lot more complicated, which is why nearly all cancer drugs fail clinical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.