Novel cost-effective nanoimprint lithography method improves ordering in periodic arrays from BCPs

May 30, 2014

Block copolymers (BCPs) are the most attractive alternative to date for the fabrication of well-defined complex periodic structures with length scales below 100 nm. Such small structures might be used in a wide range of technological applications but current available methods are very expensive, especially when those structures present length scales under 20 nm. 

A work led by the Institut Català de Nanociència i Nanotecnologia (ICN2) Phononic and Photonic Nanostructures Group suggests a new method to produce hexagonal periodic arrays with high fidelity while reducing time and costs. ICREA Research Professor Dr Clivia M. Sotomayor Torres and Dr Claudia Simão conducted, together with the authors listed below, a work published in the latest issue of Nanotechnology and featured cover article. 

The methodology consists on in situ solvent-assisted nanoimprint lithography of block copolymers, a technique which combines a top-down approach - nanoimprint lithography - with a bottom-up one - self-assembled (bottom-up). The process is assisted with solvent vapors to facilitate the imprint and simultaneous self-assembly of high Flory-Huggins parameter BCPs, the ones that yield sub-15 nm size features, in what has been called solvent vapors assisted nanoimprint lithography (SAIL).

SAIL is a scalable technique which has shown its efficiency over a large area of up to 4 square inches wafers. The resulting sample was analysed using different methods, including field emission scanning electron microscopy (FE-SEM) and grazing-incidence small-angle x-ray scattering (GISAXS). The latter was performed at the Diamond synchrotron light source (UK) and allowed characterisation of structural features of the nanostructured polymer surfaces. It is the first time that GISAXS has been used to analyse a direct-nanoimprint BCP sample.

The results obtained with SAIL demonstrated an improvement in ordering of the nanodot lattice of up to 50%. It is a low cost, scalable and fast technique which brings self-assembled BCPs closer to their industrial application. These versatile materials are very interesting for applications such as storage devices, nano-electronics, low-k dielectrics or biochemical applications. 

Explore further: More precise method of nanopatterning

More information: Claudia Simão, Worawut Khunsin, Nikolaos Kehagias, Mathieu Salaun, Marc Zelsmann, Michael A Morris, and Clivia M Sotomayor Torres. Order quantification of hexagonal periodic arrays fabricated by in situ solvent-assisted nanoimprint lithography of block copolymers. Nanotechnology. 25, 175703 (2014). DOI: 10.1088/0957-4484/25/17/175703

Related Stories

More precise method of nanopatterning

August 4, 2011

“A nanoimprint method has already been achieved in nanopatterning with a high resolution using negative type photoresist,” Kosei Ueno tells PhysOrg.com. Ueno is a scientist at Hokkaido University in Sapporo, Japan, ...

Scientists develop 3D SEM metrology for 10nm structures

March 24, 2014

(Phys.org) —PML researchers have devised an idea for determining the three-dimensional shape of features as small as 10 nanometers wide. The model-based method compares data from scanning electron microscope (SEM) images ...

A new approach to engineering the materials of the future

April 22, 2014

Some of the most interesting and fascinating electronic devices that will someday be available to consumers, from paper-thin computers to electronic fabric, will be the result of advanced materials designed by scientists. ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.