New catalysts to remove oxygenated compounds from bio-derived oils

May 07, 2014
New catalysts to remove oxygenated compounds from bio-derived oils
The deoxygenation of biomass such as corn stover or forestry waste could be the key to development of viable biofuels. Credit: Matauw/iStock/Thinkstock

Dwindling crude oil reserves, accompanied by rising prices and environmental concerns, have led to increased interest in the use of renewable fuels. Biofuels produced from waste agricultural or forestry material are particularly desirable because they avoid diverting resources from the production of food crops.

Oils produced by high-temperature treatment of these waste materials, however, contain a large amount of oxygenated compounds that result in undesirable properties such as high viscosity and corrosiveness. Now, Jie Chang, Armando Borgna and co-workers from the A*STAR Institute of Chemical and Engineering Sciences in Singapore describe a series of catalysts that might be used to upgrad these oils by removing the undesirable oxygen-containing functional groups. Using the compound guaiacol as a model for oxygenated bio-derived oils, the researchers found that the most promising catalysts for guaiacol deoxygenation are comprised of molybdenum metal on a carbon support.

The diversity of sources of waste biomass means that there is great variability in the content of the bio-oils produced by the initial heat treatment, which is itself the subject of much research. Guaiacol provides, in a single and easily available compound, the types of oxygen-containing functional groups that typically need to be removed.

Catalysts for the related process of desulfurization are widely used in petroleum refineries to produce cleaner fuels, but they are not optimized for deoxygenation. "The desulfurization catalysts are well developed and understood because of extensive research into the mechanisms by which they work," explains Chang. "We are using guaiacol as a model compound to develop a similar level of understanding for deoxygenation."

The best catalysts identified by the researchers show complete conversion of guaiacol and over 80 per cent selectivity to the desired hydrocarbon products within minutes.

Chang and co-workers undertook a detailed study of the structure of the catalysts before and during the reaction, as well as of the catalysts that were deactivated. They also attempted to identify the reaction process—in particular, the types of oxygen-containing that react first and whether this affects the performance of the catalyst.

While catalyst selectivity is critical, other factors such as the activity and stability of the will prove equally important because of their impact on the economics of the overall process. "There is a long way to go before this complete 'biomass to fuel' process can become commercial," says Chang. "Also, we hope to develop the selectivity even further so that it becomes useful for developing fine chemicals as well as fuels."

Explore further: Scientists draw unified picture of alcohol's interactions with early transition metal oxide catalysts

More information: Chang, J., Danuthai, T., Dewiyanti, S., Wang, C. & Borgna, A. Hydrodeoxygenation of guaiacol over carbon-supported metal catalysts. ChemCatChem 5, 3041–3049 (2013). dx.doi.org/10.1002/cctc.201300096

add to favorites email to friend print save as pdf

Related Stories

New process speeds conversion of biomass to fuels

Feb 08, 2013

(Phys.org)—Scientists made a major step forward recently towards transforming biomass-derived molecules into fuels. The team led by Los Alamos National Laboratory researchers elucidated the chemical mechanism ...

New Class of Catalyst Sports Shapely Selectivity

Mar 10, 2010

A new class of catalytic material has been studied by scientists at Pacific Northwest National Laboratory. Metal-organic frameworks (MOFs) display a unique three-dimensional structure that is highly selective ...

Recommended for you

A renewable bioplastic made from squid proteins

1 hour ago

In the central Northern Pacific is an area that may be the size of Texas called the Great Pacific Garbage Patch. Made up of tons of floating plastic debris, the patch is killing seabirds and poisoning marine ...

Self-repairing subsea material

Dec 16, 2014

Embryonic faults in subsea high voltage installations are difficult to detect and very expensive to repair. Researchers believe that self-repairing materials could be the answer.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.