Sending algae into space to probe plants in extreme environments

May 28, 2014 by Dennis O'brien
At the Institute of Crystallography in Rome, Italy, Giuseppina Rea selects algae cultures for the space flight. Credit: Maria Teresa Giardi.

It may sound like the opening scene in a low-budget science fiction movie: Scientists send algae into space—some of it mutant—to see if it will grow. But an Agricultural Research Service scientist and an international team of researchers have in fact sent algae into a low Earth orbit to study the effects of space on photosynthesis and plant growth. The research, funded in part by the European Space Agency, is part of an effort to find new ways to produce food and biofuels in extreme environments.

Autar Mattoo, a plant physiologist with ARS's Sustainable Agricultural Systems Laboratory in Beltsville, Maryland, and his colleagues placed samples of the alga Chlamydomonas reinhardtii in airtight "photo cells" and had them launched in a Russian-made Soyuz capsule from the Baikonur Cosmodrome in Kazakhstan.

The C. reinhardtii, often studied as a model for , spent 15 days in orbit getting doses of cosmic radiation while under light and temperature conditions that would ensure growth on earth. Four mutants of C. reinhardtii with alterations in an important gene were also sent up. Mattoo and his colleagues from the National Research Council of Italy, based in Rome, and Martin-Luther University in Wittenberg, Germany, exposed the same control and mutant algae to similar conditions in an Earth-based laboratory to compare results.

During photosynthesis in normal conditions, a protein-pigment complex known as "Photosystem II" (PS II) must constantly be repaired to fix damage caused by sunlight and ultraviolet radiation. As part of that repair process, a protein known as "D1" is continuously being replaced. Research has shown that mutations of the D1 protein in the PS II complex can either increase or decrease photosynthetic activity.

Project coordinator Maria Teresa Giardi and fellow engineers hold the experiment materials before they are loaded into the capsule. Credit: Maria Teresa Giardi.

With this study, the researchers wanted to assess the effects of microgravity, cosmic rays, high-energy particles, and the ionizing radiation of space on the PS II complex, photosynthesis, and . They also wanted to see if the effects would differ in a simple model for photosynthesis, an alga, with the D1 gene altered in specific ways.

The scientists' goal is to engineer critical components of photosynthetic machinery to increase their efficiency and stability so that one day crops will produce higher yields and grow under . The work is considered vital to meeting future demands for crop productivity and biofuels.

They found that some aspect of the space environment inhibited the ability of the control C. reinhardtii and two of the four to photosynthesize and grow, both in space and later when they were brought back to Earth. However, two other mutant strains flourished, both in space and when they returned. The results, published in PLOS One in May 2013, highlight the importance of the D1 protein both in photosynthesis and as a target of environmental signals.

Future research will focus on developing D1 mutants of C. reinhardtii with enhanced stability and greater capacities for photosynthesis and growth in extreme environments.

Explore further: New technique will accelerate genetic characterization of photosynthesis

add to favorites email to friend print save as pdf

Related Stories

Increasing efficiency of hydrogen production from green algae

Apr 15, 2013

New research results from Uppsala University, Sweden, instill hope of efficient hydrogen production with green algae being possible in the future, despite the prevailing scepticism based on previous research. The study, which ...

Studying photosynthesis, from outer space

Mar 24, 2014

Plants convert energy from sunlight into chemical energy during a process called photosynthesis. This energy is passed on to humans and animals that eat the plants, and thus photosynthesis is the primary ...

Algae can draw energy from other plants

Nov 20, 2012

Flowers need water and light to grow. Even children learn that plants use sunlight to gather energy from earth and water. Members of Professor Dr. Olaf Kruse's biological research team at Bielefeld University ...

New insight into photosynthesis

May 27, 2014

The way that algae and plants respond to light has been reinterpreted based on results from experiments studying real-time structural changes in green algae. Under particular lighting conditions during photosynthesis, ...

Recommended for you

Cohesin molecule safeguards cell division

23 hours ago

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.