Sending algae into space to probe plants in extreme environments

May 28, 2014 by Dennis O'brien
At the Institute of Crystallography in Rome, Italy, Giuseppina Rea selects algae cultures for the space flight. Credit: Maria Teresa Giardi.

It may sound like the opening scene in a low-budget science fiction movie: Scientists send algae into space—some of it mutant—to see if it will grow. But an Agricultural Research Service scientist and an international team of researchers have in fact sent algae into a low Earth orbit to study the effects of space on photosynthesis and plant growth. The research, funded in part by the European Space Agency, is part of an effort to find new ways to produce food and biofuels in extreme environments.

Autar Mattoo, a plant physiologist with ARS's Sustainable Agricultural Systems Laboratory in Beltsville, Maryland, and his colleagues placed samples of the alga Chlamydomonas reinhardtii in airtight "photo cells" and had them launched in a Russian-made Soyuz capsule from the Baikonur Cosmodrome in Kazakhstan.

The C. reinhardtii, often studied as a model for , spent 15 days in orbit getting doses of cosmic radiation while under light and temperature conditions that would ensure growth on earth. Four mutants of C. reinhardtii with alterations in an important gene were also sent up. Mattoo and his colleagues from the National Research Council of Italy, based in Rome, and Martin-Luther University in Wittenberg, Germany, exposed the same control and mutant algae to similar conditions in an Earth-based laboratory to compare results.

During photosynthesis in normal conditions, a protein-pigment complex known as "Photosystem II" (PS II) must constantly be repaired to fix damage caused by sunlight and ultraviolet radiation. As part of that repair process, a protein known as "D1" is continuously being replaced. Research has shown that mutations of the D1 protein in the PS II complex can either increase or decrease photosynthetic activity.

Project coordinator Maria Teresa Giardi and fellow engineers hold the experiment materials before they are loaded into the capsule. Credit: Maria Teresa Giardi.

With this study, the researchers wanted to assess the effects of microgravity, cosmic rays, high-energy particles, and the ionizing radiation of space on the PS II complex, photosynthesis, and . They also wanted to see if the effects would differ in a simple model for photosynthesis, an alga, with the D1 gene altered in specific ways.

The scientists' goal is to engineer critical components of photosynthetic machinery to increase their efficiency and stability so that one day crops will produce higher yields and grow under . The work is considered vital to meeting future demands for crop productivity and biofuels.

They found that some aspect of the space environment inhibited the ability of the control C. reinhardtii and two of the four to photosynthesize and grow, both in space and later when they were brought back to Earth. However, two other mutant strains flourished, both in space and when they returned. The results, published in PLOS One in May 2013, highlight the importance of the D1 protein both in photosynthesis and as a target of environmental signals.

Future research will focus on developing D1 mutants of C. reinhardtii with enhanced stability and greater capacities for photosynthesis and growth in extreme environments.

Explore further: New technique will accelerate genetic characterization of photosynthesis

add to favorites email to friend print save as pdf

Related Stories

Increasing efficiency of hydrogen production from green algae

Apr 15, 2013

New research results from Uppsala University, Sweden, instill hope of efficient hydrogen production with green algae being possible in the future, despite the prevailing scepticism based on previous research. The study, which ...

Studying photosynthesis, from outer space

Mar 24, 2014

Plants convert energy from sunlight into chemical energy during a process called photosynthesis. This energy is passed on to humans and animals that eat the plants, and thus photosynthesis is the primary ...

Algae can draw energy from other plants

Nov 20, 2012

Flowers need water and light to grow. Even children learn that plants use sunlight to gather energy from earth and water. Members of Professor Dr. Olaf Kruse's biological research team at Bielefeld University ...

New insight into photosynthesis

May 27, 2014

The way that algae and plants respond to light has been reinterpreted based on results from experiments studying real-time structural changes in green algae. Under particular lighting conditions during photosynthesis, ...

Recommended for you

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

Scrapie could breach the species barrier

Dec 24, 2014

INRA scientists have shown for the first time that the pathogens responsible for scrapie in small ruminants (prions) have the potential to convert the human prion protein from a healthy state to a pathological ...

Extracting bioactive compounds from marine microalgae

Dec 24, 2014

Microalgae can produce high value health compounds like omega-3s , traditionally sourced from fish. With declining fish stocks, an alternative source is imperative. Published in the Pertanika Journal of Tr ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.