New genome-editing platform significantly increases accuracy of CRISPR-based systems

Apr 25, 2014

A next-generation genome editing system developed by Massachusetts General Hospital (MGH) investigators substantially decreases the risk of producing unwanted, off-target gene mutations. In a paper receiving online publication in Nature Biotechnology, the researchers report a new CRISPR-based RNA-guided nuclease technology that uses two guide RNAs, significantly reducing the chance of cutting through DNA strands at mismatched sites.

"This system combines the ease of use of the widely adopted CRISPR/Cas system with a dimerization-dependent nuclease activity that confers higher specificity of action," says J. Keith Joung, MD, PhD, associate chief for Research in the MGH Department of Pathology and senior author of the report. "Higher specificity will be essential for any future clinical use of these nucleases, and the new class of proteins we describe could provide an important option for therapeutic ."

Engineered CRISPR-Cas nucleases – genome-editing tools that combine a short RNA segment matching its DNA target with a DNA-cutting enzyme called Cas9 – have been the subject of much investigation since their initial development in 2012. Easier to use than the earlier ZFN (zinc finger nuclease) and TALEN (transcription activator-like effector nuclease) systems, they have successfully induced genomic changes in several animal models systems and in human cells. But in a previous Nature Biotechnology paper published in June 2013, Joung's team reported that CRISPR-Cas nucleases could produce additional mutations in human cells, even at sites that differed from the DNA target by as much as five nucleotides.

To address this situation, the investigators developed a new platform in which the targeting function of Cas9 was fused to a nuclease derived from a well-characterized enzyme called Fokl, which only functions when two copies of the molecule are paired, a relationship called dimerization. This change essentially doubled the length of DNA that must be recognized for cleavage by these new CRISPR RNA-guided Fokl nucleases (RFNs), significantly increasing the precision of genome editing in . Importantly, Joung and his colleagues also demonstrated that these new RFNs are as effective at on-target modification as existing Cas9 nucleases that target a shorter DNA sequence.

"By doubling the length of the recognized DNA sequence, we have developed a new class of genome -editing tools with substantially improved fidelity compared with existing wild-type Cas9 nucleases and nickases (enzymes that cleave a single DNA strand)," says Joung, an associate professor of Pathology at Harvard Medical School. The research team also has developed software enabling users to identify potential target sites for these RFNs and incorporated that capability into ZiFiT Targeter, a software package freely available at http://zifit.partners.org.

Explore further: Investigators insert large DNA sequence into mammalian cells

Related Stories

Structure of key CRISPR complex revealed

Feb 13, 2014

Researchers from the Broad Institute and MIT have teamed up with colleagues from the University of Tokyo to form the first high definition picture of the Cas9 complex – a key part of the CRISPR-Cas system used by scientists ...

Puzzling question in bacterial immune system answered

Jan 29, 2014

(Phys.org) —A central question has been answered regarding a protein that plays an essential role in the bacterial immune system and is fast becoming a valuable tool for genetic engineering. A team of researchers ...

Recommended for you

Why do strawberries taste so good?

3 hours ago

Each year, spectators at the Wimbledon tennis tournament get through a whopping 30 tons of strawberries in the course of a summer fortnight. It is no wonder that the association between Wimbledon and strawberries ...

Investigators insert large DNA sequence into mammalian cells

17 hours ago

For the first time, researchers have used a simplified technique derived from a defense mechanism evolved by bacteria and other single-celled organisms to successfully insert a large DNA sequence into a predetermined genomic ...

Can gene editing provide a solution to global hunger?

Jul 06, 2015

According to the World Food Program, some 795 million people – one in nine people on earth – don't have enough food to lead a healthy active life. That will only get worse with the next global food cris ...

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.