Researchers use DNA strands to create nanobot computer inside living animal

Apr 10, 2014 by Bob Yirka report
Atomic force microscope images of robot architectures. Credit: (c) Nature Nanotechnology (2014) doi:10.1038/nnano.2014.58

(Phys.org) —A team of researchers at Bar-Ilan University in Israel has successfully demonstrated an ability to use strands of DNA to create a nanobot computer inside of a living creature—a cockroach. In their paper published in Nature Nanotechnology, the researchers describe how they created several nanobot structures using strands of DNA, injected them into a living cockroach, then watched as they worked together as a computer to target one of the insects cells.

Prior research has shown that DNA strands can be programmable, mimicking circuits and even solving simple math problems. The team in Israel has now extended that work to show that such programmability can be used inside of a living organism to perform work, such as destroying cancer cells.

DNA strands can be programmed because of their natural tendency to react to different proteins. In this new effort, the team unwound DNA strands and then tied them together in an origami type box structure. The box was then "filled" with a single chemical molecule. Next, other such objects were created for the purpose of interacting with both the box structure and certain proteins found inside of the cockroach. The whole point was to create multiple scenarios in which the box would open automatically upon colliding with certain proteins. Adding multiple nanostructures allows for increasing the number of possibilities. For example, if the box structure will only open if it encounters three kinds of proteins, one made naturally by the cockroach, and two others carried by two different DNA origami structures. By mixing the combinations, it's possible to cause the box to open using logic operations such as AND, OR, NOT (where the box will not open if a certain protein is present) etc., and that of course means that computational operations can be carried out—all inside of a living organism.

In their study, the researchers filled the origami box with a chemical that binds with hemolymph molecules, which are found inside a cockroach's version of a bloodstream. All of the injected nanobots were imbued with a fluorescent marker so that the researchers could follow their progress inside the . They report that their experiments worked as envisioned—they were able to get the box to open or not, depending on the programming of the entire fleet of nanobots sent into the insect on multiple occasions under a variety of scenarios. Cleary impressed with their own results, the team suggests that similar nanobot computers could be constructed and be ready for trial in humans in as little as five years.

Explore further: Nanomolecular origami boxes hold big promise for energy storage

More information: Universal computing by DNA origami robots in a living animal, Nature Nanotechnology (2014) DOI: 10.1038/nnano.2014.58

Abstract
Biological systems are collections of discrete molecular objects that move around and collide with each other. Cells carry out elaborate processes by precisely controlling these collisions, but developing artificial machines that can interface with and control such interactions remains a significant challenge. DNA is a natural substrate for computing and has been used to implement a diverse set of mathematical problems, logic circuits and robotics. The molecule also interfaces naturally with living systems, and different forms of DNA-based biocomputing have already been demonstrated. Here, we show that DNA origami can be used to fabricate nanoscale robots that are capable of dynamically interacting with each other in a living animal. The interactions generate logical outputs, which are relayed to switch molecular payloads on or off. As a proof of principle, we use the system to create architectures that emulate various logic gates (AND, OR, XOR, NAND, NOT, CNOT and a half adder). Following an ex vivo prototyping phase, we successfully used the DNA origami robots in living cockroaches (Blaberus discoidalis) to control a molecule that targets their cells.

add to favorites email to friend print save as pdf

Related Stories

Artificial ion channels created using DNA origami

Nov 16, 2012

(Phys.org)—Researchers in Germany and the US have used scaffolded DNA origami techniques to create ion channels or pores that span and penetrate lipid membranes and mimic natural ion channels.

Recommended for you

Molecular beacons shine light on how cells 'crawl'

Oct 24, 2014

Adherent cells, the kind that form the architecture of all multi-cellular organisms, are mechanically engineered with precise forces that allow them to move around and stick to things. Proteins called integrin ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

alfie_null
not rated yet Apr 11, 2014
I wonder what is the upper limit on the number of gates? Also, how fast they switch (probably pretty slow).