Whole-genome sequencing of the elephant shark offers insights into bone disease and immunity in humans

Mar 12, 2014
Whole-genome sequencing of the elephant shark offers insights into bone disease and immunity in humans
The genome sequence of the elephant shark, the slowest evolving member of the vertebrate family, yields information related to bone formation and immunity. Credit: A*STAR Institute of Molecular and Cell Biology

Sequencing the genomes of vertebrates can provide scientists with valuable clues about the evolution of the human genome. By analyzing and comparing different genomes, researchers can pinpoint variations in genes and proteins to help uncover the ways in which vertebrates have evolved and diverged from each other over time.

Recently, Byrappa Venkatesh at the A*STAR Institute of Molecular and Cell Biology, Singapore, together with co-workers across Asia, the United States, Canada and Europe, sequenced the entire genome of Callorhinchus milii—also known as the elephant shark. Their results reveal traits in the elephant shark—specifically, a lack of bone formation and an unusual immune system—that have wide-ranging implications for human medical science.

"Most shark-family genomes are larger than the and would be difficult to sequence and assemble," explains Venkatesh. "After a long search, we identified the elephant shark, whose genome is one-third of the size of the human genome—giving us a viable target for whole-genome sequencing. This shark is also a good candidate for investigating the ancestry of all ."

The elephant shark is a member of the cartilaginous fish family, which diverged from bony vertebrates around 450 million years ago and have skeletons largely comprised of cartilage. Through their study, Venkatesh and his team were able to confirm that the elephant shark is the slowest evolving of all known vertebrates, including the 'living fossil' coelacanth fish.

By comparing the elephant shark and human genomes, the team discovered that the shark is missing a key gene family responsible for . "From humans and other bony vertebrates, we already know that the genes in this family are involved in generating bone," states Venkatesh. "However, confirmation that they are absent in the elephant shark makes these genes prime candidates in human bone diseases."

The researchers also uncovered a surprising feature of the elephant shark's immune system. Interestingly, the shark has only one type of immune 'helper cell' and is missing the more specialized T-cells found in humans and other . T-cells are a type of white blood cell that provide defense against viral and bacterial infections and are thought to be crucial for fighting autoimmune diseases.

"Since elephant sharks seem capable of living long and healthy lives without the elaborate T-cells found in humans, it is plausible they use alternative mechanisms of immunity," explains Venkatesh. "Understanding these mechanisms may help to develop novel strategies for improving immunity in humans in the future."

Explore further: DNA samples from fungi collections provide key to mushroom 'tree of life'

More information: Venkatesh, B., Lee, A. P., Ravi, V., Maurya, A. K., Lian, M. M. et al. "Elephant shark genome provides unique insights into gnathostome evolution." Nature 505, 174–179 (2014). dx.doi.org/10.1038/nature12826

Related Stories

New piece in the jigsaw puzzle of human origins

Jan 15, 2009

In an article in today's Nature, Uppsala researcher Martin Brazeau describes the skull and jaws of a fish that lived about 410 million years ago. The study may give important clues to the origin of jawed vertebrates, and th ...

Fish fossil yields jaw-dropping data on Man's past

Sep 25, 2013

The ancestor of all creatures with jaws and a backbone was not a sleek, shark-like beast but a toothless, armoured fish, said a study Wednesday that rewrites Man's evolutionary history.

Recommended for you

Estuaries protect Dungeness crabs from deadly parasites

15 hours ago

Parasitic worms can pose a serious threat to the Dungeness crab, a commercially important fishery species found along the west coast of North America. The worms are thought to have caused or contributed to ...

An evolutionary heads-up—the brain size advantage

16 hours ago

A larger brain brings better cognitive performance. And so it seems only logical that a larger brain would offer a higher survival potential. In the course of evolution, large brains should therefore win ...

Our bond with dogs may go back more than 27,000 years

May 21, 2015

Dogs' special relationship to humans may go back 27,000 to 40,000 years, according to genomic analysis of an ancient Taimyr wolf bone reported in the Cell Press journal Current Biology on May 21. Earlier genome ...

Social structure 'helps birds avoid a collision course'

May 21, 2015

The sight of skilful aerial manoeuvring by flocks of Greylag geese to avoid collisions with York's Millennium Bridge intrigued mathematical biologist Dr Jamie Wood. It raised the question of how birds collectively ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.