Virtual bees help to unravel complex causes of colony decline

Mar 04, 2014
Virtual bees help to unravel complex causes of colony decline
Credit: Peter Kennedy

Scientists have created an ingenious computer model that simulates a honey bee colony over the course of several years.

The BEEHAVE model, published today in the Journal of Applied Ecology, was created to investigate the losses of that have been reported in recent years and to identify the best course of action for improving honeybee health.

A team of scientists, led by Professor Juliet Osborne from the Environment and Sustainability Institute, University of Exeter (and previously at Rothamsted Research), developed BEEHAVE, which simulates the life of a colony including the queen's egg laying, brood care by nurse bees and foragers collecting nectar and pollen in a realistic landscape.

Professor Osborne said: "It is a real challenge to understand which factors are most important in affecting bee colony growth and survival. This is the first opportunity to simulate the effects of several factors together, such as food availability, mite infestation and disease, over realistic time scales."

The model allows researchers, beekeepers and anyone interested in bees, to predict colony development and honey production under different environmental conditions and beekeeping practices. To build the simulation, the scientists brought together existing honeybee research and data to develop a new model that integrated processes occurring inside and outside the hive.

The first results of the model show that colonies infested with a common parasitic mite (varroa) can be much more vulnerable to food shortages. Effects within the first year can be subtle and might be missed by beekeepers during routine management. But the model shows that these effects build up over subsequent years leading to eventual failure of the colony, if it was not given an effective varroa treatment.

BEEHAVE can also be used to investigate potential consequences of pesticide applications. For example, the BEEHAVE model can simulate the impact of increased loss of foragers. The results show that colonies may be more resilient to this forager loss than previously thought in the short-term, but effects may accumulate over years, especially when colonies are also limited by food supply.

BEEHAVE simulations show that good food sources close to the hive will make a real difference to the colony and that lack of forage over extended periods leaves them vulnerable to other environmental factors. Addressing forage availability is critical to maintaining healthy hives and colonies over the long term.

Professor Osborne added: "The use of this by a variety of stakeholders could stimulate the development of new approaches to bee management, pesticide risk assessment and landscape management. The advantage is that each of these factors can be tested in a virtual environment in different combinations, before testing in the field. Whilst BEEHAVE is mathematically very complex, it has a user-friendly interface and a fully accessible manual so it can be explored and used by a large variety of interested people".

Explore further: Uncovering the drivers of honey bee colony declines and losses

More information: BEEHAVE is freely available at www.beehave-model.net.Ā 

add to favorites email to friend print save as pdf

Related Stories

Scientists see if bees 'are what they eat'

May 08, 2013

(Phys.org) ā€”In a paper published today in the peer-reviewed science journal PLoS ONE, researchers have presented a new model to explore how changes in food availability might influence honeybee colony growth ...

Researchers study effects of pesticides on honeybee health

Jul 22, 2013

Virginia Tech researchers are gathering valuable information about the impact of pesticide exposure on honey bee colony health in Virginia, helping both the apicultural and agricultural industries to reduce the loss of managed ...

Solving the mystery of the vanishing bees

Apr 19, 2011

(PhysOrg.com) -- As scientists continue to be baffled over the recent decline in bee populations around the world, a new model developed by Dr Andrew Barron at Macquarie University in collaboration with David ...

Honeybees entomb to protect from pesticides

Apr 08, 2011

(PhysOrg.com) -- With the drastic rise in the disappearance of honeybee colonies throughout the world in recent years there has become a large focus on the study of honeybees and the effects of pesticides ...

Recommended for you

Dogs hear our words and how we say them

12 hours ago

When people hear another person talking to them, they respond not only to what is being saidā€”those consonants and vowels strung together into words and sentencesā€”but also to other features of that speechā€”the ...

Amazonian shrimps: An underwater world still unknown

13 hours ago

A study reveals how little we know about the Amazonian diversity. Aiming to resolve a scientific debate about the validity of two species of freshwater shrimp described in the first half of the last century, ...

Factors that drive sexual traits

14 hours ago

Many male animals have multiple displays and behaviours to attract females; and often the larger or greater the better.

Study reveals tiger shark movements around Maui and Oahu

16 hours ago

UH MānoaĀ researchersĀ are usingĀ tracking devices to gain new insights into tiger shark movements in coastal waters around Maui and O'ahu. The ongoing study reveals their coastal habitat preferences

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.