First joint result from LHC and Tevatron experiments

Mar 19, 2014

(Phys.org) —Scientists working on the world's leading particle collider experiments have joined forces, combined their data and produced the first joint result from Fermilab's Tevatron and CERN's Large Hadron Collider (LHC), past and current holders of the record for most powerful particle collider on Earth. Scientists from the four experiments involved—ATLAS, CDF, CMS and DZero—announced their joint findings on the mass of the top quark today at the Rencontres de Moriond international physics conference in Italy.

Together the four experiments pooled their data analysis power to arrive at a new world's best value for the mass of the of 173.34 plus/minus 0.76 GeV/c2.

Experiments at the LHC at the CERN laboratory in Geneva, Switzerland and the Tevatron collider at Fermilab near Chicago in Illinois, USA are the only ones that have ever seen top quarks—the heaviest elementary particles ever observed. The top quark's huge mass (more than 100 times that of the proton) makes it one of the most important tools in the physicists' quest to understand the nature of the universe.

The new precise value of the top-quark mass will allow scientists to test further the mathematical framework that describes the quantum connections between the top quark, the Higgs particle and the carrier of the electroweak force, the W boson. Theorists will explore how the new, more precise value will change predictions regarding the stability of the Higgs field and its effects on the evolution of the universe. It will also allow scientists to look for inconsistencies in the Standard Model of – searching for hints of new physics that will lead to a better understanding of the nature of the universe.

"The combining together of data from CERN and Fermilab to make a precision top quark mass result is a strong indication of its importance to understanding nature," said Fermilab director Nigel Lockyer. "It's a great example of the international collaboration in our field."

A total of more than six thousand scientists from more than 50 countries participate in the four experimental collaborations. The CDF and DZero experiments discovered the top quark in 1995, and the Tevatron produced about 300,000 top quark events during its 25-year lifetime, completed in 2011. Since it started collider physics operations in 2009, the LHC has produced close to 18 million events with top quarks, making it the world's leading top quark factory.

"Collaborative competition is the name of the game," said CERN's Director General Rolf Heuer. "Competition between experimental collaborations and labs spurs us on, but collaboration such as this underpins the global particle physics endeavour and is essential in advancing our knowledge of the universe we live in."

Each of the four collaborations previously released their individual top-quark mass measurements. Combining them together required close collaboration between the four experiments, understanding in detail each other's techniques and uncertainties. Each experiment measured the top-quark using several different methods by analysing different top quark decay channels, using sophisticated analysis techniques developed and improved over more than 20 years of top research beginning at the Tevatron and continuing at the LHC.

Explore further: Scientists complete the top quark puzzle

More information: The joint measurement has been submitted to the electronic arXiv and is available at arxiv.org/abs/1403.4427.

add to favorites email to friend print save as pdf

Related Stories

Scientists complete the top quark puzzle

Feb 24, 2014

Scientists on the CDF and DZero experiments at the U.S. Department of Energy's Fermi National Accelerator Laboratory have announced that they have found the final predicted way of creating a top quark, completing ...

Tevatron experiments close in on favored Higgs mass range

Jul 21, 2011

(PhysOrg.com) -- Experiments at the Department of Energy’s Fermilab are close to reaching the critical sensitivity that is necessary to look for the existence of a light Higgs particle. Scientists from both the CDF and ...

Recommended for you

A new multi-bit 'spin' for MRAM storage

18 hours ago

Interest in magnetic random access memory (MRAM) is escalating, thanks to demand for fast, low-cost, nonvolatile, low-consumption, secure memory devices. MRAM, which relies on manipulating the magnetization ...

New study refines biological evolution model

Jul 21, 2014

Models for the evolution of life are now being developed to try and clarify the long term dynamics of an evolving system of species. Specifically, a recent model proposed by Petri Kärenlampi from the University ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

determinist
not rated yet Mar 20, 2014
Why is mass expressed here as a unit of electromotive force and not in a more 'weight' oriented class? After weighing myself this morning, I realize that I have to loose some GeV's. Is it just that this is the energy released upon impact? Please enlighten.