Engineers print a functioning 1.5m-wide prototype unmanned aerial vehicle

Mar 28, 2014 by Amy Pullan
Engineers at the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield have successfully printed a 1.5m-wide prototype unmanned aerial vehicle (UAV) for a research project looking at 3D printing of complex designs.

(Phys.org) —Engineers at the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield have successfully printed a 1.5m-wide prototype unmanned aerial vehicle (UAV) for a research project looking at 3D printing of complex designs.

The engineers said the polymer craft could form the basis of cheap and potentially disposable UAVs that could be built and deployed in remote situations potentially within as little as 24 hours.

Earlier versions required significant amounts of support material around component parts to prevent the airframe structures from deforming during the build process. Using support material adds a direct material cost, and significantly increases build time, in some cases by an order of magnitude. This is a result of the machine having to change between build and support structure heads after each printed layer.

New 3D printing techniques, such as the fused deposition modelling (FDM) used to make the UAV at Sheffield, could soon be used in the creation of products without the need for complex and expensive tooling and the time required in traditional manufacturing.

The UAV has already completed a test flight as a glider. Researchers are developing an electric ducted fan propulsion system that will be incorporated into the airframe's central spine. They plan to develop the craft for guidance by GPS or camera technology, controlled by an operator wearing first person-view goggles.

Engineers print a functioning 1.5m-wide prototype unmanned aerial vehicle

Dr Garth Nicholson who led the project said: "Following successful flight testing, we are working to incorporate blended winglets and twin ducted fan propulsion. We are also investigating full on-board data logging of flight parameters, autonomous operation by GPS, and control by surface morphing technology. Concepts for novel ducted fan designs are also being investigated".

The Sheffield UAV comprises nine parts that can be snapped together.

It weighs less than 2kg and is made from thermoplastic. The engineers are currently evaluating the potential of nylon as a printing material that would make the UAV 60 per cent stronger with no increase in weight.

Explore further: MIT team's wireless Vital-Radio could follow breathing, heart rate at home

Related Stories

3-D printing yields advantages for US ITER engineers

Mar 12, 2014

(Phys.org) —ITER, the international fusion research facility now under construction in St. Paul-lez-Durance, France, has been called a puzzle of a million pieces. US ITER staff at Oak Ridge National Laboratory ...

3D printing takes on metal at Amsterdam lab (w/ video)

Feb 22, 2014

(Phys.org) —To say that the Joris Laarman Lab is an innovative type of group is putting it mildly. The Amsterdam place is described as "an experimental playground set up to study and shape the future. It ...

3D-printed metal bike frame is light but strong

Feb 10, 2014

(Phys.org) —As a bicycle newsmaker, you can file this under 3D-printed projects and you can flag it as a uniquely light yet strong 3D-printed titanium bicycle frame. The frame, announced earlier this month, ...

Titanium powder used to 3D print automotive parts

Dec 10, 2013

(Phys.org) —To date, the 3D printing revolution has focused on the use of plastics – cheap printers' feedstock and high throughput. Until now 3D printing with metal has been prohibitively expensive because ...

Recommended for you

Team develops faster, higher quality 3-D camera

Apr 24, 2015

When Microsoft released the Kinect for Xbox in November 2010, it transformed the video game industry. The most inexpensive 3-D camera to date, the Kinect bypassed the need for joysticks and controllers by ...

Researchers finding applications for tough spinel ceramic

Apr 24, 2015

Imagine a glass window that's tough like armor, a camera lens that doesn't get scratched in a sand storm, or a smart phone that doesn't break when dropped. Except it's not glass, it's a special ceramic called ...

Classroom acoustics for architects

Apr 23, 2015

The Acoustical Society of America (ASA) has published a free online booklet for architects to aid in the application of ANSI/ASA S12.60-2010/Part 1-American National Standard Acoustical Performance Criteria, Design Requirements, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.