Breakthrough in hybrid species science

Mar 07, 2014
Massey University computational biologist Murray Cox

(Phys.org) —Massey University scientists have discovered a universal law that explains how hybrid species survive and thrive.

Computational biologist Professor Murray Cox and molecular biologist Dr Austen Ganley led the research that analysed what happens when a new species is formed. Their findings were published today in the Public Library of Science online journal, PLoS Genetics.

"When two very different species suddenly merge together, a is created instantaneously that contains two different sets of machinery, or RNA (Ribonucleic acid) as it's known," Professor Cox says. "Some parts of this machinery won't work together, so we asked the question, how does this hybrid survive?"

Professor Cox says hybrids are surprisingly common and can be seen in the cotton used to make bed-sheets, the wheat in bread and in New Zealand alpine plants.

His team used advanced computational biology methods to sequence and analyse hundreds of millions of RNA copies of a found in grass. "This particularly fungus [epichloe endophyte] is one of the good guys," he says. "The plant gives the fungus a place to live, and the fungus produces chemicals that kill insects that try to eat the grass. This hidden relationship is a key reason for the success of New Zealand's multibillion dollar dairy industry."

Professor Cox was amazed to find that the RNA levels in the grass fungus were almost identical to the patterns found in cotton – the only other that has undergone similar analysis.

"These species are radically different, for starters, one is a plant, the other is a fungus," he says. "Therefore we realised we had identified universal rules that dictate how gene expression has to behave in order for hybrid species to control their two sets of machinery [RNA], regardless of what exact species those hybrids are."

These genetic rules revealed that the hybrid's genes mimic one parent or the other. "The RNA levels showed one copy effectively gets turned off. It's not simply an average of what its parents have. This pattern occurs in both fungi and plants—in other words, there are universal rules that control in hybrids across the tree of life."

It is this final point that has generated the greatest interest in the scientific community and earned Professor Cox's research a place in the PLOS Genetics publication.

Explore further: How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass?

add to favorites email to friend print save as pdf

Related Stories

Breakthrough in plant-fungi relationship

Jul 07, 2010

(PhysOrg.com) -- Massey biologists have uncovered for the first time the complete set of gene messages that define the symbiotic interaction between a fungal endophyte and its grass host.

Fungi collection key in identifying diseases

Jul 30, 2013

A collection of fungi maintained by the U.S. Department of Agriculture (USDA) played a crucial role in helping scientists identify the specific fungus causing an anthracnose disease discovered in a southern ...

A universal RNA extraction protocol for land plants

Dec 16, 2013

RNA, a nucleic acid involved in protein synthesis, is widely used in genetic research to study patterns of gene expression in different organisms. The types and quantities of RNA present in an organism indicate which genes ...

Frog killing fungus found to infect crayfish too

Dec 18, 2012

(Phys.org)—A team of US biologists has found that the chytrid fungus, believed to be responsible for amphibian deaths worldwide, also infects and kills crayfish. In their paper published in the Proceedings of ...

Recommended for you

Quest to unravel mysteries of our gene network

12 hours ago

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

13 hours ago

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.