New biosensor will guard water supplies from toxic threats

Mar 11, 2014

Supported by a $953,958 grant from the Defense Advanced Research Projects Agency (DARPA), researchers at the University of California San Diego will develop a sophisticated new biosensor that can protect the nation's water supplies from a wide range of toxins, including heavy metals and other poisons.

The project, led by Jeff Hasty, director of the BioCircuits Institute at UC San Diego, will combine next-generation sequencing, synthetic biology, and microfluidic technologies to engineer a highly specific array of biosensors that will continuously monitor water supplies for the presence of toxins.

The DARPA funding has the potential for an additional $655,130 in a second year of support.

"The novel device will detect sub-lethal quantities of such as mercury, arsenic and cadmium – as well as cyanide and organophosphate pesticides – with very high specificity," said Hasty. "Unlike current testing methods, which are costly and can only be performed sporadically, our technology will be a low-cost, continuous 'first response' system. It will signal if more thorough analytical chemistry tests should be employed."

The BioCircuits Institute, one of 20 organized research units at UC San Diego, has extensive experience developing algorithms for pattern recognition – including chemical discrimination – using artificial sensors with broad responses to a wide range of chemicals.

The heart of the detection device will be a microfluidic chip that continuously directs water to colonies of microbial cells that act as detectors. "The device is engineered to generate macroscopic signals so that specialized optics are unnecessary," Hasty said. "This will set the stage for the conversion to electrical signals that will enable the use of low-cost electronics."

"We're using common lab strains of bacteria because the genetics and molecular behavior are safe, well-known, and sensitive to the toxins we want to detect," said Hasty. "The workings of the biosensor will be protected by a tough, temperature-controlled case that blocks exposure to ultraviolet radiation."

"The device will be deployed in open bodies of water, and will need almost no infrastructure to continuously monitor water quality," Hasty said. "It will detect far more toxins than conventional test strips – and do so without needing trained personnel."

In addition to helping protect the nation's from terrorist contamination or accidental pollution, the device might well lead to patentable technology.

"Working with the university's Technology Transfer Office," Hasty said, "we will be looking for a local company to license and commercialize our device."

Explore further: Research team develops rapid smartphone-based mercury testing and mapping

add to favorites email to friend print save as pdf

Related Stories

Dip chip technology tests toxicity on the go

May 14, 2012

From man-made toxic chemicals such as industrial by-products to poisons that occur naturally, a water or food supply can be easily contaminated. And for every level of toxic material ingested, there is some level of bodily ...

Recommended for you

The fluorescent fingerprint of plastics

2 hours ago

LMU researchers have developed a new process which will greatly simplify the process of sorting plastics in recycling plants. The method enables automated identification of polymers, facilitating rapid separation ...

Water and sunlight the formula for sustainable fuel

6 hours ago

An Australian National University (ANU) team has successfully replicated one of the crucial steps in photosynthesis, opening the way for biological systems powered by sunlight which could manufacture hydrogen ...

Rice chemist wins 'Nobel Prize of Cyprus'

6 hours ago

Rice University organic chemist K.C. Nicolaou has earned three prestigious international honors, including the Nemitsas Prize, the highest honor a Cypriot scientist can receive and one of the most prestigious ...

Researchers create engineered energy absorbing material

8 hours ago

(Phys.org) —Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. Gels are effective as padding but are relatively heavy; gel performance ...

Solar fuels as generated by nature

8 hours ago

(Phys.org) —Society's energy supply problems could be solved in the future using a model adopted from nature. During photosynthesis, plants, algae and some species of bacteria produce sugars and other energy-rich ...

User comments : 0