Quantum communication scheme provides guaranteed security without quantum memories

February 17, 2014 by Lisa Zyga feature
A communication protocol that uses quantum digital signatures (QDS) offers security guaranteed by quantum mechanics. A new QDS protocol that does not require quantum memories is the first scheme that may be feasible with current technology. Credit: Dunjko, et al. ©2014 American Physical Society

(Phys.org) —Quantum mechanics offers the potential for creating communication technologies with an inherently higher security level than today's classical technologies. Using quantum digital signatures (QDS), for example, messages can be sent to multiple recipients with the guarantee that the messages cannot be forged or tampered with.

"QDS provides essentially all features for which standard 'classical' are used in modern communication—guaranteed authenticity, integrity and transferability of messages," Erika Andersson at Heriot-Watt University in Edinburgh, UK, told Phys.org. "The need for these features is ubiquitous in the modern e-world. They are used regularly in, for example, online banking, email systems, and smart electrical grids."

However, all QDS schemes proposed so far require advanced quantum memories capable of storing millions of qubits for months or even years. In contrast, today's state-of-the-art quantum memories cannot store information for longer than a few minutes, which makes all QDS schemes proposed so far unfeasible.

Now in a new paper published in Physical Review Letters, Andersson and UK-based coauthors Vedran Dunjko and Petros Wallden from Croatia and Greece, respectively, have proposed a QDS scheme that does not require any quantum memory, making the scheme feasible with current technology.

A generic QDS protocol consists of two stages: distribution and messaging. In the distribution stage, the sender sends pairs of quantum states—or quantum signatures—to multiple recipients. This stage is independent of the future message sent in the messaging stage, where classical messages are sent to one or more recipients.

Sometimes, it may be months or years from the time the quantum signatures are sent to the time an actual message is sent, which is why have been required.

The new protocol differs from the generic one in both stages. In the distribution stage, the quantum signatures are converted to classical information through quantum measurements, but they still retain the same level of security guaranteed by quantum mechanics. Yet because the information is now classical, it can be stored in a classical memory instead of a quantum one.

Similarly, in the messaging stage, only classical data is processed by the receivers. One receiver may authenticate a message received directly from the sender, and a second receiver may verify a message forwarded by the first receiver. The scientists showed that, in both cases—authentication and verification—the new scheme provides security against problems such as forgery, tampering, and repudiation (in which the second receiver rejects the forwarded message).

By showing that it is possible to perform a QDS scheme by using classical correlations, while maintaining the same security that is guaranteed by quantum correlations, the results open the doors to the experimental realization of QDS systems.

"We have, since the publishing of our work, already carried out an experimental demonstration of our scheme on a small scale, in collaboration with the group of Prof. Gerald Buller at Heriot-Watt University," the physicists wrote. "This we also aim at extending. Furthermore, we are developing new theoretical results which will make QDS even more efficient and feasible—everything can always be improved!"

Explore further: Quantum communication without entanglement could perform faster than previously thought possible

More information: Vedran Dunjko, et al. "Quantum Digital Signatures without Quantum Memory." Physical Review Letters. DOI: 10.1103/PhysRevLett.112.040502

Robert J. Collins, et al. "Optical realisation of Quantum Digital Signatures without quantum memory." arXiv:1311.5760 [quant-ph]

Related Stories

Physicists correct quantum errors

February 3, 2014

Scientists from the FOM Foundation and the Technical University Delft, working together at the Kavli Institute of Nanoscience, have succeeded in detecting and correcting errors during the storage of quantum states in a diamond. ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Feb 17, 2014
Can somebody tell me what happened to Alice? ;-)
not rated yet Feb 18, 2014
.... sigh... where to begin.
The safety of quantum encryption is in the inability to copy quantum data. As soon as you convert it to empirical data structures it can easily be hacked and used in the classic way.
QE is also secured by safety against brute force, where classical key systems can be brute forced, or rainbow tabled.

this whole article boils down to a system that's difficult to intercept but not harder than any other system to crack. Could have been completely summed up with "team finds way of reproducibly converting quantum states into classical keystrings".. Nothing more than a hardware key and those have been around longer than anyone alive.
might stay secure slightly longer than PGP.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.