Converting polyethylene waste into liquid fuel

Jan 27, 2014

Researchers in India have developed a relatively low-temperature process to convert certain kinds of plastic waste into liquid fuel as a way to re-use discarded plastic bags and other products. They report full details next month in the International Journal of Environment and Waste Management.

Many pundits describe the present time as the "plastic age" for good reason and as such we generate a lot plastic waste. Among that waste is the common polymer, low-density polyethylene (LDPE), which is used to make many types of container, medical and laboratory equipment, computer components and, of course, . Recycling initiatives are in place in many parts of the world, but much of the polyethylene waste ends up in landfill, dispersed in the environment or in the sea.

Chemist Achyut Kumar Panda of Centurion University of Technology and Management Odisha, India is working with chemical engineer Raghubansh Kumar Singh of the National Institute of Technology, Orissa, India, to develop a commercially viable technology for efficiently rendering LDPE into a . Given that most plastics are made from petrochemicals, this solution to plastic recycling brings the life-cycle full circle allowing a second use as an oil substitute. The process could, if implemented on a large enough scale, reduce pressures on landfill as well as ameliorating the effects of dwindling oil supplies in a world with increasing demands on petrochemicals for fuel.

In their approach, the team heats the to between 400 and 500 Celsius over a kaolin catalyst. This causes the plastic's long chain polymer chains to break apart in a process known as thermo-catalytic degradation. This releases large quantities of much smaller, carbon-rich molecules. The team used the analytical technique of gas chromatography coupled mass spectrometry to characterize these product molecules and found the components of their liquid fuel to be mainly paraffins and olefins 10 to 16 carbon atoms long. This, they explain, makes the liquid fuel very similar chemically to conventional petrochemical fuels.

In terms of the catalyst, Kaolin is a clay mineral - containing aluminum and silicon. It acts as a catalyst by providing a large reactive surface on which the polymer molecules can sit and so be exposed to high temperature inside the batch reactor, which breaks them apart. The team optimized the reaction at 450 Celsius a temperature with the lowest amount of kaolin at which more than 70% of the liquid fuel is produced. In other words, for every kilogram of waste plastic they could produce 700 grams of liquid fuel. The byproducts were combustible gases and wax. They could boost the yield to almost 80% and minimize reaction times, but this required a lot more catalyst 1 kg of kaolin for every 2 kg of .

Explore further: Burning plastic as cleanly as natural gas

More information: "Thermo-catalytic degradation of low density polyethylene to liquid fuel over kaolin catalyst" in Int. J. Environment and Waste Management, 2014, 13, 104-114

add to favorites email to friend print save as pdf

Related Stories

Burning plastic as cleanly as natural gas

Dec 05, 2013

Yiannis Levendis, Distinguished Professor Mechanical and Industrial Engineering at Northeastern, keeps a photograph of a burning plastic foam cup tacked to the wall above his desk. Thick black smoke emanates ...

Sorting plastic waste: A magnetic game

Jun 14, 2013

More than one third of the total plastic production in Europe—about 14 million tonnes per year—are polyolefins, also known as polyalkenes. This is a family of polymers used for the manufacture of a variety ...

What your candles and TV screen have in common

Jan 14, 2014

The next time you light a candle and switch on your television ready for a relaxing evening at home, just think. These two vastly different products have much more in common than you might imagine.

Recommended for you

A new approach to creating organic zeolites

22 hours ago

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 0