Identification of living Legionella using specific metabolic lipopolysaccharides

Jan 23, 2014
Identification of living Legionella using specific metabolic lipopolysaccharides

(Phys.org) —The bacterium that causes Legionnaires' disease remains difficult to track. French researchers have now developed a new technique that should allow living representatives of this dangerous pathogen to be detected much more quickly than with conventional methods. As they report in the journal Angewandte Chemie, samples are exposed to an azide-modified compound that the pathogen specifically incorporates into its shell, which is made of saccharide units. A fluorescent marker attached to the azide groups is used to identify the pathogen.

In the summer of 1976, a previously unknown disease broke out at a convention of the American Legion in Philadelphia. Of the 221 people infected, 34 died. The disease now known as Legionnaires' disease has broken out many times since then. The pathogen behind it was identified as a bacterium called Legionella pneumophila that proliferates in systems of standing water at temperatures between 25 and 50 °C, such as water reservoirs, boilers, fountains, whirlpool tubs, or intermittently used water pipes. Although drinking the contaminated water poses no risk, inhaling droplets leads to severe lung infections.

In order to avoid epidemics, it is necessary to monitor vulnerable systems. However, traditional testing methods based on bacterial cultures require 10 days to identify the pathogen – far too late to intervene in suspected cases. Sam Dukan, Boris Vauzeilles, and their team at the Institute for the Chemistry of Natural Substances (CNRS, Gif-sur-Yvette), the Institut de Chimie Moléculaire et des Matériaux d'Orsay (CNRS/Université Paris-Sud) and the Institut de Microbiologie de la Méditérranée (CNRS/Aix-Marseille University) have now developed a new method that can be used to identify living of the species Legionella pneumophila within just one day.

Legionella are Gram-negative bacteria with a species-specific pattern of saccharide molecules on their surface, called the lipopolysaccharides. In Legionella pneumophila, these contain a special saccharide building block that other bacteria do not have. For their new test, the researchers exposed the sample to a precursor molecule of this saccharide with an additional azide group (–N3) tacked on. If the bacteria in question are present, they take up this substance and use it to build the saccharide building block to use in their lipopolysaccharides—which are now tagged with azide groups. These groups can then be used to attach various probes to the surface of the cell. For example with a fluorescent label, the marked bacteria give off a green glow under a microscope. Because only Legionella pneumophila synthesizes the special saccharide building blocks, other species of Legionella are not marked in this process. This new method is the first successful metabolic lipopolysaccharide label using a specific saccharide that can selectively detect one species.

Explore further: How Legionella subverts to survive

More information: Boris Vauzeilles"Identification of Living Legionella pneumophila Using Species-Specific Metabolic Lipopolysaccharide Labeling." Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201309072

add to favorites email to friend print save as pdf

Related Stories

How Legionella subverts to survive

Jul 18, 2013

(Medical Xpress)—Bacteria of the genus Legionella have evolved a sophisticated system to replicate in the phagocytic cells of their hosts. LMU researchers have now identified a novel component of this system.

Novel mechanism allows Legionella to hide in body

May 20, 2013

(Medical Xpress)—The feared Legionella pneumophila is responsible for legionellosis, an infectious disease that can lead to pneumonia. To infect humans, this pathogen has developed a complex method that allows it to camouflage ...

US drinking water sanitation still a concern: CDC

Sep 05, 2013

(HealthDay)—While U.S. water sanitation has improved, bacteria-laden drinking water continues to cause disease outbreaks, according to a report released Thursday by federal health officials.

Nevada officials: Luxor guests had Legionnaires'

Jan 30, 2012

(AP) -- Health officials in Las Vegas said Monday that the bacteria that causes Legionnaires' disease was found in water samples at the Luxor hotel-casino this month after a guest died of the form of pneumonia.

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

Impact glass stores biodata for millions of years

(Phys.org) —Bits of plant life encapsulated in molten glass by asteroid and comet impacts millions of years ago give geologists information about climate and life forms on the ancient Earth. Scientists ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...