Identification of living Legionella using specific metabolic lipopolysaccharides

January 23, 2014
Identification of living Legionella using specific metabolic lipopolysaccharides

(Phys.org) —The bacterium that causes Legionnaires' disease remains difficult to track. French researchers have now developed a new technique that should allow living representatives of this dangerous pathogen to be detected much more quickly than with conventional methods. As they report in the journal Angewandte Chemie, samples are exposed to an azide-modified compound that the pathogen specifically incorporates into its shell, which is made of saccharide units. A fluorescent marker attached to the azide groups is used to identify the pathogen.

In the summer of 1976, a previously unknown disease broke out at a convention of the American Legion in Philadelphia. Of the 221 people infected, 34 died. The disease now known as Legionnaires' disease has broken out many times since then. The pathogen behind it was identified as a bacterium called Legionella pneumophila that proliferates in systems of standing water at temperatures between 25 and 50 °C, such as water reservoirs, boilers, fountains, whirlpool tubs, or intermittently used water pipes. Although drinking the contaminated water poses no risk, inhaling droplets leads to severe lung infections.

In order to avoid epidemics, it is necessary to monitor vulnerable systems. However, traditional testing methods based on bacterial cultures require 10 days to identify the pathogen – far too late to intervene in suspected cases. Sam Dukan, Boris Vauzeilles, and their team at the Institute for the Chemistry of Natural Substances (CNRS, Gif-sur-Yvette), the Institut de Chimie Moléculaire et des Matériaux d'Orsay (CNRS/Université Paris-Sud) and the Institut de Microbiologie de la Méditérranée (CNRS/Aix-Marseille University) have now developed a new method that can be used to identify living of the species Legionella pneumophila within just one day.

Legionella are Gram-negative bacteria with a species-specific pattern of saccharide molecules on their surface, called the lipopolysaccharides. In Legionella pneumophila, these contain a special saccharide building block that other bacteria do not have. For their new test, the researchers exposed the sample to a precursor molecule of this saccharide with an additional azide group (–N3) tacked on. If the bacteria in question are present, they take up this substance and use it to build the saccharide building block to use in their lipopolysaccharides—which are now tagged with azide groups. These groups can then be used to attach various probes to the surface of the cell. For example with a fluorescent label, the marked bacteria give off a green glow under a microscope. Because only Legionella pneumophila synthesizes the special saccharide building blocks, other species of Legionella are not marked in this process. This new method is the first successful metabolic lipopolysaccharide label using a specific saccharide that can selectively detect one species.

Explore further: How Legionella subverts to survive

More information: Boris Vauzeilles"Identification of Living Legionella pneumophila Using Species-Specific Metabolic Lipopolysaccharide Labeling." Angewandte Chemie International Edition, dx.doi.org/10.1002/anie.201309072

Related Stories

How Legionella subverts to survive

July 18, 2013

(Medical Xpress)—Bacteria of the genus Legionella have evolved a sophisticated system to replicate in the phagocytic cells of their hosts. LMU researchers have now identified a novel component of this system.

Novel mechanism allows Legionella to hide in body

May 20, 2013

(Medical Xpress)—The feared Legionella pneumophila is responsible for legionellosis, an infectious disease that can lead to pneumonia. To infect humans, this pathogen has developed a complex method that allows it to camouflage ...

US drinking water sanitation still a concern: CDC

September 5, 2013

(HealthDay)—While U.S. water sanitation has improved, bacteria-laden drinking water continues to cause disease outbreaks, according to a report released Thursday by federal health officials.

Nevada officials: Luxor guests had Legionnaires'

January 30, 2012

(AP) -- Health officials in Las Vegas said Monday that the bacteria that causes Legionnaires' disease was found in water samples at the Luxor hotel-casino this month after a guest died of the form of pneumonia.

Recommended for you

Cloud formation—how feldspar acts as ice nucleus

December 9, 2016

In the atmosphere, feldspar particles act as ice nuclei that make ice crystals grow in clouds and enable precipitation. The discovery was made by researchers of Karlsruhe Institute of Technology (KIT) and University College ...

Why cryptophyte algae are really good at harvesting light

December 8, 2016

In an algae-eat-algae world, it's the single-celled photosynthetic organisms at the top (layer of the ocean) that absorb the most sunlight. Underneath, in the sublayers, are cryptophyte algae that must compete for photons ...

Chemical trickery corrals 'hyperactive' metal-oxide cluster

December 8, 2016

After decades of eluding researchers because of chemical instability, key metal-oxide clusters have been isolated in water, a significant advance for growing the clusters with the impeccable control over atoms that's required ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.