New genes spring and spread from non-coding DNA

Jan 23, 2014

"Where do new genes come from?" is a long-standing question in genetics and evolutionary biology. A new study from researchers at the University of California, Davis, published Jan. 23 in Science Express, shows that new genes are created from non-coding DNA more rapidly than expected.

"This shows very clearly that genes are being born from ancestral sequences all the time," said David Begun, professor of evolution and ecology at UC Davis and senior author on the paper.

Geneticists have long puzzled about how completely new genes appear. In a well-known model proposed by Nobel laureate Susumu Ohno, new functions appear when existing genes are duplicated and then diverge in function. Begun's laboratory discovered a few years ago that new genes could also appear from previously non-coding stretches of DNA, and similar effects have since been discovered in other animals and plants.

"This is the first example of totally new genes still spreading through a species," said Li Zhao, a postdoctoral researcher at UC Davis and first author on the paper.

Zhao looked at RNA transcripts—corresponding to expressed genes—in the testes of several wild-derived strains of the fruit fly Drosophila melanogaster, and compared them to transcripts expressed in the standard reference sequence strain and in two closely related species. She found 248 new genes that exist only in D. melanogaster, just over a hundred of which were "fixed," or already spread throughout the population.

These genes emerged from ancestrally non-coding DNA since D. melanogaster split from its close relative, D. simulans.

The new genes showed evidence of being under selection, meaning that they were spreading through the population as flies carrying them gained an edge in reproduction. They fell into two broad classes: genes found at high frequency tended to be larger and more complex, and therefore likely had more significant functions, than those found at low frequency.

The researchers studied testis because earlier work showed a relatively high rate of adaptive evolution for male reproductive function, Begun said. They plan to expand their studies to other tissues.

Zhao said that it's possible that these new form when a random mutation in the regulatory machinery causes a piece of non-coding DNA to be transcribed to RNA.

"If it has a beneficial effect, then it gets selected," she said. It's difficult to say at this point how important this phenomenon is for generating new genetic material, Zhao said.

Explore further: Scientists shed some light on biological "dark matter"

More information: "Origin and Spread of de Novo Genes in Drosophila melanogaster Populations," by L. Zhao et al. Science Express, 2014.

Related Stories

Scientists shed some light on biological "dark matter"

Jan 20, 2014

Biologists have studied the functionality of a poorly understood category of genes, which produce long non-coding RNA molecules rather than proteins. Some of these genes have been conserved throughout evolution, ...

Comparing genomes of wild and domestic tomato

Jun 26, 2013

You say tomato, I say comparative transcriptomics. Researchers in the U.S., Europe and Japan have produced the first comparison of both the DNA sequences and which genes are active, or being transcribed, ...

Protein coding 'junk genes' may be linked to cancer

Nov 17, 2013

By using a new analysis method, researchers at Karolinska Institutet and Science for Life Laboratory (SciLifeLab) in Sweden have found close to one hundred novel human gene regions that code for proteins. A number of these ...

Picky-eater Flies Losing Smell Genes

Apr 02, 2007

A UC Davis researcher is hot on the scent of some lost fruit fly genes. According to population biology graduate student Carolyn McBride, the specialist fruit fly Drosophila sechellia is losing genes for smell and taste receptors ...

Genetic switches play big role in human evolution

Jun 12, 2013

(Phys.org) —A Cornell study offers further proof that the divergence of humans from chimpanzees some 4 million to 6 million years ago was profoundly influenced by mutations to DNA sequences that play roles ...

Research sheds new light on heritability of disease

Jan 16, 2014

A group of international researchers, led by a research fellow in the Harvard Medical School-affiliated Institute for Aging Research at Hebrew SeniorLife, published a paper today in Cell describing a study aimed at better ...

Recommended for you

Team advances genome editing technique

Oct 21, 2014

Customized genome editing – the ability to edit desired DNA sequences to add, delete, activate or suppress specific genes – has major potential for application in medicine, biotechnology, food and agriculture.

Studies steadily advance cellulosic ethanol prospects

Oct 20, 2014

At the Agricultural Research Service's Bioenergy Research Unit in Peoria, Illinois, field work and bench investigations keep ARS scientists on the scientific front lines of converting biomass into cellulosic ...

User comments : 0