Faster X-ray technology observes catalyst surface at work with atomic resolution

Jan 30, 2014
Schematic illustration of the palladium surface with a single oxide layer. Credit: Johan Gustafson/Lund University

By using a novel X-ray technique, researchers have observed a catalyst surface at work in real time and were able to resolve its atomic structure in detail. The new technique, pioneered at DESY's X-ray light source PETRA III, may pave the way for the design of better catalysts and other materials on the atomic level. It greatly speeds up the determination of atomic surface structures and enables live recordings of surface reactions like catalysis, corrosion and growth processes with a time resolution of less than a second.

"We can now investigate surface processes that were not observable in before and that play a central role in many fields of materials science," explains DESY researcher Prof. Andreas Stierle. The Swedish-German research team around lead author Dr. Johan Gustafson of Lund University present their work in the US journal Science.

Materials scientists currently lack a method to record data of the full atomic structure of surfaces during dynamic processes within a reasonable time. Existing methods are either too slow or require ultra high vacuum, prohibiting the flow of gas in the and thus ruling out a live investigation of dynamic reaction processes involving gas phases at near atmospheric pressures.

"Our goal was to observe surfaces under reactive, application-oriented conditions in real time," says Stierle. The team used the high-energy X-rays from DESY's light source PETRA III. When X-rays strike a solid material, they are diffracted into a characteristic pattern that yields information about the of the material. In conventional X-ray measurements performed at lower photon energies, the sample and the detector must be rotated to map out the full diffraction pattern painstakingly step by step, a procedure that can easily consume ten hours or more.

In contrast, the high-energy X-rays of PETRA III are scattered into a much smaller angular range, producing a much more compact diffraction pattern that can be recorded at once with a high-end two-dimensional detector at the High Energy Materials Science measuring station P07. "This approach makes it possible to record data 10 to 100 times faster," explains Stierle. As a consequence, scientists can gain a full surface structure in less than ten minutes or track individual structural features with a temporal resolution of less than a second. "It also allows us to more easily identify unknown or unexpected structures," underlines Stierle.

For their investigations, the researchers installed a test chamber, in which the gas pressure can be up to 1 bar—the same as normal atmospheric pressure—to approach realistic reaction conditions. A mass spectrometer allows for on-line monitoring of the gas distribution within the test chamber during measurements.

To demonstrate the new approach, the researchers watched a catalyst of the precious metal palladium live at work: a two millimetre thick palladium single crystal with a diameter of one centimetre converts toxic into harmless , much like catalytic converters do in cars. The technique enabled the scientists to observe how the palladium began to convert the carbon monoxide (CO) into carbon dioxide (CO2) as soon as oxygen (O2) also flowed into the chamber. "We can watch how the catalyst switches from a non-reactive state into a reactive one," explains Stierle who heads the NanoLab at DESY and also holds an appointment as professor at the University of Hamburg.

The researchers hope to identify the catalyst's active phase by using this new approach. For decades, scientists have debated whether the conversion of carbon monoxide into carbon dioxide, for example, takes place on the bare metallic surface, on an oxide layer, or on oxide islands on the surface. "The new technology gives us the opportunity to identify the reaction centres in real time at atomic resolution," says Stierle.

In the end, the findings could be used to optimise catalysts. In general, catalysts are substances that accelerate chemical reactions without being consumed by them. The new X-ray technique has a wide variety of applications for materials research. The scientists expect completely new insights into the kinetics of surface processes, enabling the design of new materials on the . "The combination of the extremely bright X-ray source, the sample environment and the 2D detector at PETRA III is worldwide unique," emphasises Stierle.

Explore further: Organic chemistry: Carbon dioxide tamed

More information: "High-Energy Surface X-Ray Diffraction for Fast Surface Structure Determination" Science, 2014. www.sciencemag.org/content/ear… 1/29/science.1246834

Related Stories

Organic chemistry: Carbon dioxide tamed

Jan 15, 2014

Carbon dioxide has become notorious as a troublesome greenhouse gas produced by burning fossil fuels. Now, this gas could also offer a cheap, abundant and nontoxic source of carbon for the chemical reactions ...

Process holds promise for production of synthetic gasoline

Dec 02, 2013

A chemical system developed by researchers at the University of Illinois at Chicago can efficiently perform the first step in the process of creating syngas, gasoline and other energy-rich products out of carbon dioxide.

Recommended for you

A new approach to creating organic zeolites

Jul 24, 2014

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 0