Researchers identify first 'coppicing response' gene in willow

Jan 08, 2014
Willow trees in bud. Credit: Lawrence Weston

(Phys.org) —Scientists have, for the first time, discovered a gene that contributes to the 'coppicing response' of willows - the ability to make new growth when cut back to their base or stump.

Willows grow fast, produce high yields, need little fertilizer and easily re-grow after being coppiced, or cut back - qualities which make hugely important for commercial use as renewable and sustainable biomass for bioenergy.

'Coppicing response' - the rate and type of new growth following cut back - is critical to these energy crops as it enables willows to be grown in three year harvesting cycles, affects vigour and yield, along with the ratio of bark to wood in the stem.

Despite its importance, the genetic regulation of coppicing response is little understood. Now, a team of plant scientists from the Sainsbury Laboratory, in collaboration with Rothamsted Research, have used knowledge and methodologies from the model plant species Arabidopsis to identify SxMAX4 as the first coppicing response gene known to date.

The study was funded by the BBSRC Crop Science Initiative, and is published today in the Plant Biotechnology Journal.

Although cultivated since the Roman times, and still used for baskets and cricket bats, willows have been subject to only minimal domestication. Luckily, the genus shows huge genetic diversity, from massive trees to small bushes, and scientists believe there is great potential for crop improvement through breeding.

But improving willows is challenging. Many target traits - including coppicing response - are complex, and a good understanding of the genetic basis of developmental processes is needed to improve willow varieties. However, due to their large size, perennial growth cycle and the effort required to assess characteristics in the field, studying development in willows is extremely difficult.

Gene function procedures routinely used in model organisms are not yet established in willows, but scientists are focusing on transferring knowledge from Arabidopsis - undoubtedly the best characterized and widely-studied model plant today - to species of commercial importance that are much harder to study, such as willow.

The latest findings demonstrate that great results can be achieved from exploitation of the vast body of knowledge in this model, and by combining with genetic mapping approaches, say the researchers.

"This has been a very exciting collaboration for me," said Professor Ottoline Leyser of the Sainsbury Laboratory. "I expected that our Arabidopsis work would be useful for understanding trees such as willow, but I did not anticipate quite how similar bud activation in these two species would be.

"The approach we have used to test willow genes in Arabidopsis could be widely useful for assessing functional genetic diversity in slow-growing species."

Dr Angela Karp, from Rothamsted Research, added: "It was really exciting to find that one of the MAX genes, SxMAX4, which affected branching in the Arabidopsis assay, was associated with differences in shoot re-sprouting in willow, and is located in exactly the area in the willow genome that is responsible for regulating this trait.

"This is the first time a gene has been shown to influence coppicing response and should enable the breeding of plants with desired stem numbers not only in willow but other coppiced trees."

Explore further: The secret of short stems

More information: Salmon, J., Ward, S.P., Hanley, S.J., Leyser, O. and Karp, A. (2014) Functional screening of willow alleles in Arabidopsis combined with QTL mapping in willow (Salix) identifies SxMAX4 as a coppicing response gene. Plant Biotechnol. J., DOI: 10.1111/pbi.12154

Related Stories

Wind in the willows boosts biofuel production

Jan 20, 2013

(Phys.org)—Willow trees cultivated for 'green energy' can yield up to five times more biofuel if they grow diagonally, compared with those that are allowed to grow naturally up towards the sky.

War on willows

Jul 29, 2011

Willows are major environmental weeds of riverbank habitats across much of south-eastern Australia. They obstruct water flow, increase water temperature, change water chemistry and can displace native riverine ...

The secret of short stems

Nov 12, 2013

The normal height to which plants grow is a critical trait. In the wild Arabidopsis thaliana uses the same genetic changes in the biosynthesis of the growth factor gibberellin to cut its size in half as fo ...

Willow cut-stem growers surveyed

Dec 29, 2010

Woody ornamental plants with colorful or unusually shaped stems, buds, flowers, or fruits represent a growing specialty niche in cut flower production markets. These unique plants can be good prospects for ...

Black locust showing promise for biomass potential

Jun 13, 2013

Researchers from the Energy Biosciences Institute at the University of Illinois, evaluating the biomass potential of woody crops, are taking a closer look at the black locust (Robinia pseudoacacia), which ...

Recommended for you

Getting a jump on plant-fungal interactions

Jul 29, 2014

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

User comments : 0