How bacteria respond so quickly to external changes

Dec 02, 2013

Understanding how bacteria adapt so quickly to changes in their external environment with continued high growth rates is one of the major research challenges in molecular microbiology. This is important not least for our understanding of resistance to antibiotics. A research study from Uppsala University is now presenting a model of how bacteria can rapidly adapt to environmental changes through smart regulation of their gene expression.

The study, published in PNAS (Proceedings of the National Academy of Sciences), presents a theoretical model that determines the ultimate limit for how quickly can adapt their protein levels to changes in their living environment.

For rapid growth in different environments, bacteria need to adjust their enzyme levels in order to rapidly benefit from the nutrient mix that is currently available in the surrounding. If the living environment undergoes rapid changes, the bacterium's own production of proteins has to conform to these changes in an effective way.

The growth of bacteria is determined not only by the composition of their surroundings but also by sudden changes in the living environment. This has been known since the middle of the 20th century. High levels of bacteria growth in a stable environment requires a certain kind of physiology, but also require rapid adjustments of the bacteria's protein production. The newly developed model indicates the 'minimum' time such adjustments require.

"This is an attempt to begin to answer the detailed questions about how bacteria go about adapting so rapidly. The model shows the optimal strategy for the bacterium to genetically adapt its proteome, that is, the composition of its proteins. The model is now being tested and will constitute an important point of departure for continued research in the field," says Måns Ehrenberg, professor at the Department of Cell and Molecular Biology, Uppsala University, and Scilifelab Uppsala.

Using this model, scientists can predict and test key aspects of the physiology of bacteria. It also ties together the physiology of bacteria with population genetics and growth/evolution and thus represents a systems biology view of bacterial growth and evolution.

Explore further: Predictive model a step toward using bacteria as a renewable fuel source

More information: Optimal control of gene expression for fast proteome adaptation to environmental change, www.pnas.org/cgi/doi/10.1073/pnas.1309356110

Related Stories

Errant gliding proteins yield long-sought insight

Nov 11, 2013

In order to react effectively to changes in the surroundings, bacteria must be able to quickly turn specific genes on or off. Although the overall mechanisms behind gene regulation have long been known, the fine details have ...

Green isoprene closer to reality

Nov 08, 2013

(Phys.org) —With an eye toward maximizing isoprene production in bacteria, scientists at Pacific Northwest National Laboratory and Washington State University sought to understand isoprene regulation in ...

Recommended for you

For cells, internal stress leads to unique shapes

11 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

12 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

14 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

More vets turn to prosthetics to help legless pets

A 9-month-old boxer pup named Duncan barreled down a beach in Oregon, running full tilt on soft sand into YouTube history and showing more than 4 million viewers that he can revel in a good romp despite lacking ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

New clinical trial launched for advance lung cancer

Cancer Research UK is partnering with pharmaceutical companies AstraZeneca and Pfizer to create a pioneering clinical trial for patients with advanced lung cancer – marking a new era of research into personalised medicines ...