How bacteria respond so quickly to external changes

Dec 02, 2013

Understanding how bacteria adapt so quickly to changes in their external environment with continued high growth rates is one of the major research challenges in molecular microbiology. This is important not least for our understanding of resistance to antibiotics. A research study from Uppsala University is now presenting a model of how bacteria can rapidly adapt to environmental changes through smart regulation of their gene expression.

The study, published in PNAS (Proceedings of the National Academy of Sciences), presents a theoretical model that determines the ultimate limit for how quickly can adapt their protein levels to changes in their living environment.

For rapid growth in different environments, bacteria need to adjust their enzyme levels in order to rapidly benefit from the nutrient mix that is currently available in the surrounding. If the living environment undergoes rapid changes, the bacterium's own production of proteins has to conform to these changes in an effective way.

The growth of bacteria is determined not only by the composition of their surroundings but also by sudden changes in the living environment. This has been known since the middle of the 20th century. High levels of bacteria growth in a stable environment requires a certain kind of physiology, but also require rapid adjustments of the bacteria's protein production. The newly developed model indicates the 'minimum' time such adjustments require.

"This is an attempt to begin to answer the detailed questions about how bacteria go about adapting so rapidly. The model shows the optimal strategy for the bacterium to genetically adapt its proteome, that is, the composition of its proteins. The model is now being tested and will constitute an important point of departure for continued research in the field," says Måns Ehrenberg, professor at the Department of Cell and Molecular Biology, Uppsala University, and Scilifelab Uppsala.

Using this model, scientists can predict and test key aspects of the physiology of bacteria. It also ties together the physiology of bacteria with population genetics and growth/evolution and thus represents a systems biology view of bacterial growth and evolution.

Explore further: Predictive model a step toward using bacteria as a renewable fuel source

More information: Optimal control of gene expression for fast proteome adaptation to environmental change, www.pnas.org/cgi/doi/10.1073/pnas.1309356110

Related Stories

Errant gliding proteins yield long-sought insight

Nov 11, 2013

In order to react effectively to changes in the surroundings, bacteria must be able to quickly turn specific genes on or off. Although the overall mechanisms behind gene regulation have long been known, the fine details have ...

Green isoprene closer to reality

Nov 08, 2013

(Phys.org) —With an eye toward maximizing isoprene production in bacteria, scientists at Pacific Northwest National Laboratory and Washington State University sought to understand isoprene regulation in ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0