Astrophysicists launch ambitious assessment of galaxy formation simulations

Dec 10, 2013 by Tim Stephens
Astrophysicists launch ambitious assessment of galaxy formation simulations
Inconsistencies in supercomputer simulations to be compared in the AGORA project are clearly evident in this test galaxy produced by each of nine different versions of participating codes using the same astrophysics and starting with the same initial conditions. Credit: Simulations performed by Samuel Leitner (ART-II), Ji-hoon Kim (ENZO), Oliver Hahn (GADGET-2- CFS), Keita Todoroki (GADGET-3), Alexander Hobbs (GADGET-3-CFS and GADGET-3-AFS), Sijing Shen (GASOLINE), Michael Kuhlen (PKDGRAV-2), and Romain Teyssier (RAMSES)

(Phys.org) —One of the most powerful tools for understanding the formation and evolution of galaxies has been the use of computer simulations—numerical models of astrophysical processes run on supercomputers and compared with astronomical observations. Getting computer simulations to produce realistic-looking galaxies has been a challenge, however, and different codes (simulation programs) produce inconsistent results.

Now, an international collaboration led by astrophysicists at the University of California, Santa Cruz, aims to resolve these issues through an ambitious multi-year named AGORA (Assembling Galaxies of Resolved Anatomy). AGORA will run direct comparisons of different codes using a common set of initial conditions and astrophysical assumptions. Each code treats some aspects of the physics differently, especially the way that energy from stars and supernovas is fed back into the simulated . The simulations are being run at the best resolutions currently possible, and they are using the same input physics as much as possible. The simulation results will be systematically compared with each other and against a variety of observations using a common analysis and visualization tool.

These comparisons will help researchers determine which of their simulation results are due to a particular code platform and which are due to the underlying theoretical assumptions common to all of the simulations.

"The physics of galaxy formation is extremely complicated, and the range of lengths, masses, and timescales that need to be simulated is immense," explained Piero Madau, professor of astronomy and astrophysics at UCSC and co-chair of the AGORA steering committee. "You incorporate gravity, solve the equations of hydrodynamics, and include prescriptions for gas cooling, star formation, and energy injection from supernovae into the code. After months of number crunching on a powerful supercomputer, you look at the results and wonder if that is what nature is really doing or if some of the outcomes are actually artifacts of the particular numerical implementation you used."

Dark matter

The AGORA project will explore the fundamental astrophysics of in the cosmological context of a "cold dark matter" universe. Although the nature of dark matter remains a mystery, it accounts for about 84 percent of the matter in the universe. As a result, the evolution of structure in the universe has been driven by the gravitational interactions of dark matter ("dark" because it can't be seen, and "cold" because the particles are moving slowly). The ordinary matter that forms stars and planets has fallen into the "gravitational wells" created by clumps of dark matter, giving rise to galaxies in the centers of halos.

The general structure and procedures of the AGORA project is shown in this organizational diagram. Credit: Ji-hoon Kim, California Institute of Technology

The project's first major task will be to model a realistic isolated disk galaxy using various codes and their feedback recipes, varying both the feedback parameters and the resolution. The second task will be to compare the codes in cosmological simulations. Specifically, all the participating codes will model the evolution of eight individual galaxies from the big bang to the present, resulting in final masses representing a range of galaxy sizes, from that of a dwarf galaxy to one more massive than the Milky Way. For each mass, one set of simulations would model a galaxy having a quiescent merger history (having few mergers with another galaxy its own size) and another would model a galaxy having a violent merger history with many major mergers. The final task will be to compare the results, including such observable characteristics as the shape, internal structure and velocities, and spectral energy distribution (distribution of light at different wavelengths) between simulations and with observations of real galaxies.

The AGORA project will take advantage of new infrastructure for computational astrophysics at UC Santa Cruz, including the "Hyades" supercomputer and a high-capacity data storage system. "Our ability to store and analyze the data here, and make the output of the simulations available to the community at large, has made it possible for us to set up such a large project," Madau said.

The project was initiated in a workshop at UCSC in August 2012, under the sponsorship of the University of California High-Performance AstroComputing Center (UC-HiPACC). A second workshop was held at UCSC a year later. The project now involves more than 90 astrophysicists from 45 institutions in eight nations.

A paper describing the project in detail has been accepted for publication in the Astrophysical Journal Supplement. The first author is Ji-hoon Kim, formerly a postdoctoral researcher at UCSC and now at CalTech, who is coordinating the project along with the steering committee led by Madau and Joel Primack, a professor of physics at UCSC and director of the UC-HiPACC. Other members of the AGORA steering committee are Tom Abel (Stanford), Nick Gnedin (Fermilab and University of Chicago), Lucio Mayer and Romain Teyssier (University of Zurich), and James Wadsley (McMaster University, Canada).

AGORA is not the first such comparison of supercomputer simulations of galaxy evolution, but it is the most comprehensive and the highest-resolution (finest detail). Previous astronomical comparison studies were the Santa Barbara Cluster comparison project (1999) and the Aquila comparison project (2012). The AGORA project is an open collaboration and welcomes new participants. AGORA is making all of its initial conditions and common assumptions public, both to make it easy for astrophysicists to join the collaboration and also to raise the level of galaxy simulations worldwide.

"This project will tell us what are the key ingredients that produce realistic galaxies regardless of the numerical codes. It will also challenge the community to put more effort in cross-checking their results against others'," Kim said.

Explore further: Exploring the dark universe at the speed of petaflops

More information: More information about AGORA is available in the paper, "The AGORA High-Resolution Galaxy Simulations Comparison Project," preprint available at arxiv.org/abs/1308.2669 . The official AGORA website is at www.agorasimulations.org.

add to favorites email to friend print save as pdf

Related Stories

Exploring the dark universe at the speed of petaflops

Nov 21, 2013

An astonishing 95% of our universe is made of up dark energy and dark matter. Understanding the physics of this sector is the foremost challenge in cosmology today. Sophisticated simulations of the evolution ...

Dark matter mystery deepens

Oct 17, 2011

(PhysOrg.com) -- Like all galaxies, our Milky Way is home to a strange substance called dark matter. Dark matter is invisible, betraying its presence only through its gravitational pull. Without dark matter ...

First glimpse into birth of the Milky Way

Aug 25, 2011

For almost 20 years astrophysicists have been trying to recreate the formation of spiral galaxies such as our Milky Way realistically. Now astrophysicists from the University of Zurich present the world's ...

Recommended for you

Quest for extraterrestrial life not over, experts say

Apr 18, 2014

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Continents may be a key feature of Super-Earths

Apr 18, 2014

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Exoplanets soon to gleam in the eye of NESSI

Apr 18, 2014

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

User comments : 0

More news stories

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.