South Pole telescope detector aids study of the universe

Nov 13, 2013
South Pole telescope detector aids study of the universe

Center for Nanoscale Materials (CNM) users from Argonne's High Energy Physics and Materials Science divisions helped design and operate part of the South Pole Telescope, a project that aims a large telescope at the night sky to track radiation from the period just after the universe was born. Developing and designing the detectors for the camera required expertise from several Argonne facilities and research divisions, including the expertise and capabilities in CNM's Nanofabrication & Devices Group.

In the wake of the Big Bang, all matter was hot, dense particles and light. As the universe aged, it began to spread and cool, and the intense light from that period traveled across space. The light is still traveling and has a very distinct radiation signature called the cosmic microwave background.  Mapping the cosmic microwave background can reveal information about dark matter and dark energy, which are thought to make up 95% of the universe. Dark energy affects the way galaxy clusters form. By comparing the distribution of distant galaxy clusters with the distribution observed nearby, scientists can decode the role dark energy plays in the universe.

The majority of cosmic microwave background radiation has wavelengths of 1-2 mm. These photons are absorbed by water, so a dry, flat and preferably cold space is needed to capture them. The South Pole is one of only two ideal locations on Earth. The South Pole telescope is more than 30 feet across, and Argonne scientists helped build its camera. Detectors for the camera were developed and designed with expertise from several Argonne facilities and research divisions.

At the core of the detector technology is a thin—at the nanoscale—superconducting film comprised of Mo/Au bilayer-based heterostructures modified with superconducting (niobium) and normal (gold) metal stripes. Superconductors can carry an electrical charge perfectly and are highly sensitive to changes in temperature. When thermal radiation from the cosmic microwave background hits the camera, it heats the material slightly, changing the conductivity of the film. The energy coming from that particular part of the sky is then recorded.

Explore further: 'Blockbuster' science images

More information: D. Hanson et al., "Detection of B-Mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope," Phys. Rev. Lett., 111, 141301 (2013)

add to favorites email to friend print save as pdf

Related Stories

Thales Alenia Space kicks off Euclid construction

Jul 09, 2013

The construction of ESA's Euclid space mission to explore the 'dark Universe' will be led by Italy's Thales Alenia Space as prime contractor, beginning the full industrial phase of the project. 

Celebrating the legacy of ESA's Planck mission

Oct 21, 2013

From the tiniest fraction of a second after the Big Bang to the evolution of stars and galaxies over 13.8 billion years, ESA's Planck space telescope has provided new insight into the history of our Universe. ...

Recommended for you

'Blockbuster' science images

Nov 21, 2014

At this point, the blockbuster movie Interstellar has created such a stir that one would almost have to be inside a black hole not to know about it. And while the science fiction thriller may have taken some ...

Estimating the magnetic field of an exoplanet

Nov 20, 2014

Scientists developed a new method which allows to estimate the magnetic field of a distant exoplanet, i.e., a planet, which is located outside the Solar system and orbits a different star. Moreover, they ...

It's filamentary: How galaxies evolve in the cosmic web

Nov 20, 2014

How do galaxies like our Milky Way form, and just how do they evolve? Are galaxies affected by their surrounding environment? An international team of researchers, led by astronomers at the University of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.