South Pole telescope detector aids study of the universe

Nov 13, 2013
South Pole telescope detector aids study of the universe

Center for Nanoscale Materials (CNM) users from Argonne's High Energy Physics and Materials Science divisions helped design and operate part of the South Pole Telescope, a project that aims a large telescope at the night sky to track radiation from the period just after the universe was born. Developing and designing the detectors for the camera required expertise from several Argonne facilities and research divisions, including the expertise and capabilities in CNM's Nanofabrication & Devices Group.

In the wake of the Big Bang, all matter was hot, dense particles and light. As the universe aged, it began to spread and cool, and the intense light from that period traveled across space. The light is still traveling and has a very distinct radiation signature called the cosmic microwave background.  Mapping the cosmic microwave background can reveal information about dark matter and dark energy, which are thought to make up 95% of the universe. Dark energy affects the way galaxy clusters form. By comparing the distribution of distant galaxy clusters with the distribution observed nearby, scientists can decode the role dark energy plays in the universe.

The majority of cosmic microwave background radiation has wavelengths of 1-2 mm. These photons are absorbed by water, so a dry, flat and preferably cold space is needed to capture them. The South Pole is one of only two ideal locations on Earth. The South Pole telescope is more than 30 feet across, and Argonne scientists helped build its camera. Detectors for the camera were developed and designed with expertise from several Argonne facilities and research divisions.

At the core of the detector technology is a thin—at the nanoscale—superconducting film comprised of Mo/Au bilayer-based heterostructures modified with superconducting (niobium) and normal (gold) metal stripes. Superconductors can carry an electrical charge perfectly and are highly sensitive to changes in temperature. When thermal radiation from the cosmic microwave background hits the camera, it heats the material slightly, changing the conductivity of the film. The energy coming from that particular part of the sky is then recorded.

Explore further: South Pole Telescope helps Argonne scientists study earliest ages of the universe

More information: D. Hanson et al., "Detection of B-Mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope," Phys. Rev. Lett., 111, 141301 (2013)

add to favorites email to friend print save as pdf

Related Stories

Thales Alenia Space kicks off Euclid construction

Jul 09, 2013

The construction of ESA's Euclid space mission to explore the 'dark Universe' will be led by Italy's Thales Alenia Space as prime contractor, beginning the full industrial phase of the project. 

Celebrating the legacy of ESA's Planck mission

Oct 21, 2013

From the tiniest fraction of a second after the Big Bang to the evolution of stars and galaxies over 13.8 billion years, ESA's Planck space telescope has provided new insight into the history of our Universe. ...

Recommended for you

Quest for extraterrestrial life not over, experts say

Apr 18, 2014

The discovery of an Earth-sized planet in the "habitable" zone of a distant star, though exciting, is still a long way from pointing to the existence of extraterrestrial life, experts said Friday. ...

Continents may be a key feature of Super-Earths

Apr 18, 2014

Huge Earth-like planets that have both continents and oceans may be better at harboring extraterrestrial life than those that are water-only worlds. A new study gives hope for the possibility that many super-Earth ...

Exoplanets soon to gleam in the eye of NESSI

Apr 18, 2014

(Phys.org) —The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) will soon get its first "taste" of exoplanets, helping astronomers decipher their chemical composition. Exoplanets are planets ...

User comments : 0

More news stories

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.