Pressure cooking to improve electric car batteries

Nov 18, 2013 by Sean Nealon
This is a lithium iron phosphate battery created in Kisailus lab. Credit: UC Riverside

Batteries that power electric cars have problems. They take a long time to charge. The charge doesn't hold long enough to drive long distances. They don't allow drivers to quickly accelerate. They are big and bulky.

Researchers at the University of California, Riverside's Bourns College of Engineering have redesigned the component materials of the battery in an environmentally friendly way to solve some of these problems. By creating nanoparticles with a controlled shape, they believe smaller, more powerful and energy efficient batteries can be built.

"This is a critical, fundamental step in improving the efficiency of these batteries," said David Kisailus, an associate professor of chemical and environmental engineering and lead researcher on the project.

In addition to , the redesigned batteries could be used for municipal energy storage, including energy generated by the sun and wind.

The initial findings are outlined in a just published paper called "Solvothermal Synthesis, Development and Performance of LiFePO4 Nanostructures" in the journal Crystal Growth & Design.

Kisailus, who is also the Winston Chung Endowed Professor in Energy Innovation, and Jianxin Zhu, a Ph.D. student working with Kisailus, were the lead authors of the paper. Other authors were: Joseph Fiore, Dongsheng Li, Nichola Kinsinger and Qianqian Wang, all of whom formerly worked with Kisailus; Elaine DiMasi, of Brookhaven National Laboratory; and Juchen Guo, an assistant professor of chemical and environmental engineering at UC Riverside.

The researchers in Kisailus' Biomimetics and Nanostructured Materials Lab set out to improve the efficiency of Lithium-ion batteries by targeting one of the material components of the battery, the cathode.

David Kisailus and Jianxin Zhu stand between a computer where they do battery testing. Credit: UC Riverside

Lithium iron phosphate (LiFePO4), one type of cathode, has been used in electric vehicles because of its low cost, low toxicity and thermal and chemical stability. However, its commercial potential is limited because it has poor electronic conductivity and lithium ions are not very mobile within it.

Several synthetic methods have been utilized to overcome these deficiencies by controlling particle growth. Here, Kisailus and his team used a solvothermal synthetic method, essentially placing reactants into a container and heating them up under pressure, like a pressure cooker.

Kisailus, Zhu and their team used a mixture of solvents to control the size, shape and crystallinity of the particles and then carefully monitored how the lithium iron phosphate was formed. By doing this, they were able to determine the relationship between the nanostructures they formed and their performance in batteries.

By controlling the size of nanocrystals, which were typically 5,000 times smaller than the thickness of a human hair, within shape-controlled particles of LiFePO4, Kisailus' team has shown that batteries with more power on demand may be generated.

These size and shape modulated particles offer a higher fraction of insertion points and reduced pathlengths for Li-ion transport, thus improving battery rates. Kisailus and his team are currently refining this process to not only further improve performance and reduce cost, but also implement scalability.

Explore further: Team reveals molecular structure of water at gold electrodes

More information: pubs.acs.org/doi/abs/10.1021/cg4013312

Related Stories

Inexpensive material boosts battery capacity

Oct 23, 2013

Battery-powered cars offer many environmental benefits, but a car with a full tank of gasoline can travel further. By improving the energy capacity of lithium-ion batteries, a new electrode made from iron ...

Designer glue improves lithium-ion battery life

Aug 20, 2013

(Phys.org) —When it comes to improving the performance of lithium-ion batteries, no part should be overlooked – not even the glue that binds materials together in the cathode, researchers at SLAC and ...

Solid-state battery could double the range of electric cars

Sep 19, 2013

(Phys.org) —A cutting-edge battery technology developed at the University of Colorado Boulder that could allow tomorrow's electric vehicles to travel twice as far on a charge is now closer to becoming a commercial reality.

Recommended for you

Quantum effects in nanometer-scale metallic structures

Oct 22, 2014

Plasmonic devices combine the 'super speed' of optics with the 'super small' of microelectronics. These devices exhibit quantum effects and show promise as possible ultrafast circuit elements, but current ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Thylacine
4 / 5 (1) Nov 18, 2013
" They don't allow drivers to quickly accelerate." Please tell my wife about this she thinks my Tesla accelerates much to quickly..At least when I am driving it.

Urgelt
2 / 5 (1) Nov 19, 2013
Yeah, that choice of words surprised me, too. Electric motors produce torque easily and with great efficiency, which translates into acceleration quite well. Where electric cars do less well is sustaining high speed. That tends to suck the batteries dry rather alarmingly quickly for current-generation electrical vehicles, including Teslas.

But that glitch in the study isn't important. If any of the vast number of battery studies we're seeing yields advantages for the next generation, it's all fine with me.

I'm dubious, though, that a high-pressure multi-stage process like the one described here will scale economically.

Fortunately, there are a multitude of studies being generated in this field, so there will be lots of options when it's time to back a particular technology for the next generation of automotive batteries.