Pilbara home to 3.5 billion-year-old bacterial ecosystems

November 11, 2013
Pilbara home to 3.5 billion-year-old bacterial ecosystems

(Phys.org) —Evidence of complex microbial ecosystems dating back almost 3.5 billion years has been found in Western Australia's Pilbara region by an international team including UWA Research Assistant Professor David Wacey.

The research, published this week in the journal Astrobiology has revealed the well-preserved remnants of a complex ecosystem in a 3.5 billion-year-old sedimentary rock sequence.

Professor Wacey said identifying and reconstructing Earth's earliest biosphere was challenging because the oldest were not only rare, but also almost always changed by hydrothermal and tectonic activity.

"The Pilbara region of Western Australia is one of the rare geological regions that provides insight into the early evolution of life on Earth," he said.

"Mound-like deposits created by ancient bacteria, called stromatolites, and microfossils of bacteria have previously been discovered in this region. However, a phenomenon called microbially induced sedimentary structures, or MISS, had not previously been seen in rocks of this great age."

MISS were created by microbial mats as the responded to changes in physical sediment dynamics, Professor Wacey said.

"A common example would be the binding together of sediment grains by microbes to prevent their erosion by water currents," he said. "The significance of MISS is that they not only demonstrate the presence of life, but also the presence of whole that could co-ordinate with one another to respond to changes in their environment."

A rock surface is displaying "polygonal oscillation cracks" in the 3.48 billion years old Dresser Formation, Pilbara region, Western Australia. Such and similar sedimentary structures are of biological origin. They document ancient microorganisms that formed carpet-like microbial mats on the former sediment surface. The Dresser Formation records an ancient playa-like setting -- similar environments are occurring on Mars as well. The MISS constitute a novel approach to detect and to understand Earth's earliest life. Credit: Nora Noffke

Professor Wacey, based at the ARC Centre of Excellence for Core to Crust Fluid Systems, the Centre for Microscopy, Characterisation and Analysis, and the Centre for Exploration Targeting, worked with US colleagues Nora Noffke and Daniel Christian of Old Dominion University, and Bob Hazen of the Carnegie Institute Washington.

The team described the various MISS from the ancient coastal flats preserved in the Dresser Formation and found close similarities in both form and preservation style to MISS in younger rocks.

Associate Professor Noffke, lead author of the paper, said the research extended the geological record of MISS by almost 300 million years and showed that complex mat-forming microbial communities likely existed almost 3.5 billion years ago.

MISS are among the targets of Mars rovers, which search for similar biological signals on that planet's surface. Hence, the team's findings could be significant for studies of life elsewhere in our solar system.

Explore further: Study reveals ancient rocks linked to old Earth's crust

More information: online.liebertpub.com/doi/pdfplus/10.1089/ast.2013.1030

Related Stories

Study reveals ancient rocks linked to old Earth's crust

February 24, 2010

(PhysOrg.com) -- A new geological study which took place in the Pilbara region of Western Australia brings us one step closer to understanding more precisely the timing of when the primordial earth crust was formed and its ...

Earth's oldest fossils boost hopes for life on Mars

August 21, 2011

(PhysOrg.com) -- Microfossils found in Australia show that more than 3.4 billion years ago, bacteria thrived on an Earth that had no oxygen, a finding that boosts hopes life has existed on Mars, a study published Sunday says.

Martian 'blueberries' could be clues to presence of life

September 12, 2012

(Phys.org)—A discovery at The University of Western Australia that microbes helped shape rare spheres of iron-oxide on Earth may aid the newly landed Curiosity Rover in its search for the first verifiable signs of extra-terrestrial ...

A 3.45-billion-year-old diet

November 21, 2012

Researchers are providing new information about the 'diet' of microorganisms on the early Earth. By studying 3.45-billion-year-old rocks, the team uncovered clues about ancient microbial metabolism.

Earliest evidence of life found: 3.49 billion years ago

January 4, 2013

(Phys.org)—A group of US researchers studying some of the oldest rocks in the world in the Pilbara region of Western Australia, say they have found the oldest traces of life on Earth, dated at 3.49 billion years old.

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

'Carbon sink' detected underneath world's deserts

July 28, 2015

The world's deserts may be storing some of the climate-changing carbon dioxide emitted by human activities, a new study suggests. Massive aquifers underneath deserts could hold more carbon than all the plants on land, according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.