Newly discovered protist suggests evolutionary answers, questions

Nov 14, 2013 by Leah Barbour
Newly discovered protist suggests evolutionary answers, questions
Mississippi State University's Matthew Brown, associate professor of biological sciences, led a team that recently classified this newly discovered protist, Pygsuia biforma.

From Massachusetts to Mississippi, a unicellular protist is hinting at answers about the evolution of multicellularity while raising a whole new set of questions.

Matthew Brown, assistant professor of biological sciences at Mississippi State University, recently led a research team that identified the protist as a new organism and classified its genomics.

Jeffrey Silberman collected sediment specimens in Marstons Mills, a village in Barnstable, Mass., and the University of Arkansas associate professor isolated an organism he found. Since Brown had begun post-doctoral work in genomics at Dalhousie University in Nova Scotia, Silberman offered his former UA doctoral student the opportunity to name and classify it on the evolutionary tree of life.

Brown headed the investigation that discovered the 's proteins and genes are similar to those found in multicellular life-forms. The protist Pygsuia biforma belongs to a newly identified group they named "Obazoa," which is closely related to animals and fungi.

"We then looked for specific multicellular toolkit genes, and we found genes that scientists had believed to be animal-specific," Brown said. "Integrins and the whole suite of proteins that work with integrins were thought to be something innate to multicellularity and used only for cell-to-cell communication.

"This discovery shows that these genes have been co-opted for a different use. We don't know what it does in unicellular organisms, but we can now place the origin of genes that are associated with multicellularity in unicellular organisms."

Additionally, the anaerobic protist has mitochondria, energy factories that produce adenosine triphosphate, or ATP. Brown said ATP production typically requires oxygen, but the protist lives in oxygen depleted environments. As a result, Pygsuia biforma raises questions related to the presence and function of mitochondria in anaerobic unicellular organisms.

These discoveries and new research questions they raise are important because they offer new insights into the science of evolution, Brown explained.

"By tracking the evolutionary history of these particular organisms, we're able to look at ancestral states of certain gene suites, and that's the really important thing—we need a better understanding of protist diversity and protist genome evolution to understand how organisms like animals evolved," Brown said.

Evidently, the international scientific community agrees: The team's research paper detailing these discoveries, "Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads," was recently published in Proceedings of the Royal Society B, the leading United Kingdom biological research journal.

Because of Brown's bioinformatics expertise in genetic and protein sequencing, as well as his leadership role in documenting the protist's morphology, he was the paper's lead author.

His work continues in the MSU ' Evolutionary Protistology Laboratory, also known on campus as Brown's Lab. Work there examines the evolution of eukaryotic lineages with comparative genomics and developmental transcriptomics.

Explore further: Researchers discover new organism: Finding will help scientists understand the origins of multicellular life

Related Stories

Scientists reclassify eukaryotic microorganisms

Oct 08, 2012

One of the biggest scientific challenges is the classification of the natural world, especially the protists, which are eukaryotic microorganisms. While the classification proposed by Sina Adl et al. (2005) ...

Cells like us stick together

Jun 10, 2013

Once upon a time all cells were solitary, going about the everyday business of life on their own.

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0