How nanotechnology can advance regenerative medicine

November 4, 2013
Summary figure. Nanotechnology regulates stem cell function. (A) Suitable spacing for integrin activation and integrin-mediated cell adhesion, cytoskeleton organization and cell spreading. (B) Modified nanoscaffolds regulate stem cell self-renewal, neural differentiation and osteogenic differentiation. Credit: Copyright : CC-BY Yang-Kao Wang, 2013

Nanotechnology may provide new strategies for regenerative medicine, including better tools to improve or restore damaged tissues, according to a review paper by Taiwanese researchers.

Published in the journal Science and Technology of Advanced Materials, the paper summarizes the current state of knowledge on nanotechnology with application to .

Stem cells are considered an important potential source for repairing damaged human tissues. Researchers have found that the adhesion, growth, and differentiation of stem cells are likely controlled by their surrounding microenvironment, which contains both chemical and physical cues. These cues include the "nanotopography" of the complex extracellular matrix or architecture that forms a network for human tissues.

In their review paper, Yang-Kao Wang and colleagues describe studies showing how this nanotopography (which includes nanosized pores, grooves, ridges, etc.) plays important roles in the behaviour and fate of stem cells. The authors also discuss the application of nanoparticles to stem cell isolation, tracking and imaging; how to translate nanotechnology from two to three dimensions; and the potential limitations of using nanomaterials in stem .

The paper concludes that "understanding [the] interactions of nanomaterials with may provide knowledge applicable to [the development of improved] cell-scaffold combinations in tissue engineering and ."

Explore further: Predicting the fate of stem cells

More information: Nanotechnology in the regulation of stem cell behavior. Sci Technol Adv Mater Vol. 14 (2013) p. 054401.

Related Stories

Predicting the fate of stem cells

October 22, 2013

University of Toronto researchers have developed a method that can rapidly screen human stem cells and better control what they will turn into. The technology could have potential use in regenerative medicine and drug development. ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.