# A vexing math problem finds an elegant solution

##### November 14, 2013 by Anne Ju

(Phys.org) —A famous math problem that has vexed mathematicians for decades has met an elegant solution by Cornell researchers. Graduate student Yash Lodha, working with Justin Moore, professor of mathematics, has described a geometric solution for the von Neumann-Day problem, first described by mathematician John von Neumann in 1929.

Lodha presented his solution at the London Mathematical Society's Geometric and Cohomological Group Theory symposium in August, and has submitted the work to a journal. "People were very excited by this," Lodha said. "[The solution] is natural and compelling enough to study for its own sake."

Lodha works in the field of geometric group theory. A group is a mathematical construct that describes the notion of the symmetries of an object, whether it's a physical object or a theoretical space. For example, a polygon has rotational as well as reflectional symmetries, all of which, together with the operation of composition, form what's called a finite group, because the polygon can be described as a finite sequence of operations that reflect its symmetries.

Formally, a group can be described as words in an alphabet together with a set of rules that are called "relations." Group theorists, Lodha said, are like biologists who classify species; try to categorize groups that have properties A, B or C – but is there one that has A but not C?

The inspiration for Lodha's work originated in the early 20th century, when mathematicians first proved that a ball that exists in three-dimensional space can be chopped into a of pieces – "like tearing up a piece of paper without stretching or squeezing," Lodha explained – and can be reassembled, like a jigsaw puzzle, into two balls, each the size of the original ball. This is known as the Banach-Tarski paradox.

von Neumann, in studying this paradox, was the first to describe the reason behind it: He attributed it not to the geometry of 3-D space, but to the algebraic properties of the symmetries inherent to the sphere. He was the first to isolate this property, which mathematicians today call "non-amenability."

von Neumann further observed that if a group contains free groups, which are groups that have a finite alphabet and no rules, then it must be non-amenable. He posed the question of whether the opposite is true – are there groups that do not contain free groups and are also non-amenable? The problem, later popularized by M.M. Day, waited another 40 years before mathematician Alexander Olshanskii cracked it, although Olshanskii's group had an infinite set of rules.

Another two decades went by before Olshanskii and Mark Sapir supplied another solution in response to the von Neumann-Day problem. This time, their example was governed by a finite, but astronomically large set of rules – close to 10200. It also lacked a natural geometric model. So mathematicians probed further for a group with a finite set of rules, that is non-amenable and does not contain free groups.

For the first time, Lodha describes a group that has only nine rules, a natural geometric model, is non-amenable and does not contain free groups.

Advances in mathematics are almost always incremental and build upon previous work, Lodha said. To complete this work, among his most valuable insights was one first described by the late Bill Thurston, Fields medalist and Cornell's Jacob Gould Schurman Professor of Mathematics, which involved a way of expressing the group in a different light, as a "continued fractions model."

Lodha's work also builds heavily on work by Nicolas Monod, who constructed a geometrically oriented, but not finitely presented, counterexample to the von Neumann-Day problem. Lodha and Moore's contribution was to isolate a finitely presented subgroup, with only nine relations, of Monod's example.

Further work on the group, which doesn't yet have a name, could make the solution to the von Neumann-Day problem even stronger: by isolating stronger finiteness conditions for proving that the group has a finite number of rules.

Explore further: Tackling the big unanswered problems

## Related Stories

#### Tackling the big unanswered problems

April 28, 2011

(PhysOrg.com) -- Scientific research is known to happen slowly but the timeframes pale into insignificance compared to the years spent on some of the great unsolved Maths problems.

#### Mathematics: Mapping a fixed point

November 23, 2011

(PhysOrg.com) -- For fifty years, mathematicians have grappled with a so-called “fixed point” theorem. An EPFL-based team has now found an elegant, one-page solution that opens up new perspectives in physics and ...

#### Shedding light on complex mathematical group theories

May 29, 2012

EU researchers contributed important knowledge to the field of modular representation theory in the form of proofs and pioneering analyzes.

#### Mathematicians develop new method for describing extremely complicated shapes

July 30, 2012

Mathematicians at the Institute for Advanced Study in New Jersey "bridged" topology and fractals and made a discovery that could lead to a new way of describing extremely complicated shapes such as the configuration of the ...

#### Fermat's Last Theorem, more can be proved more simply: Professor steers field toward a numbers-only proof

March 4, 2013

Fermat's Last Theorem—the idea that a certain simple equation had no solutions— went unsolved for nearly 350 years until Oxford mathematician Andrew Wiles created a proof in 1995. Now, Case Western Reserve University's ...

#### Texas banker puts up \$1M for tricky math solution

June 4, 2013

A Texas banker is upping the ante to \$1 million for whoever solves a tricky problem that's been dogging mathematicians since the 1980s.

## Recommended for you

#### Egypt says 90 percent chance of hidden rooms in Tut tomb

November 28, 2015

Egypt on Saturday said there is a 90 percent chance that hidden chambers will be found within King Tutankhamun's tomb, based on the preliminary results of a new exploration of the 3,300-year-old mausoleum.

#### Mystery of how snakes lost their legs solved by reptile fossil

November 27, 2015

Fresh analysis of a reptile fossil is helping scientists solve an evolutionary puzzle - how snakes lost their limbs.

#### Income inequality makes the rich more Scrooge-like, study finds

November 24, 2015

As the annual "season of giving" dawns, a new study finds that stark income inequity - a dramatically rising trend in the United States - makes the "haves" less generous toward others.

#### Earth's first ecosystems were more complex than previously thought, study finds

November 27, 2015

Computer simulations have allowed scientists to work out how a puzzling 555-million-year-old organism with no known modern relatives fed, revealing that some of the first large, complex organisms on Earth formed ecosystems ...

#### Betrayals of trust helped the rapid spread of human species around the world

November 24, 2015

New research by an archaeologist at the University of York suggests that betrayals of trust were the missing link in understanding the rapid spread of our own species around the world.

#### New study finds that teaching is not essential for people to learn to make effective tools

November 26, 2015

A new study from the University of Exeter has found that teaching is not essential for people to learn to make effective tools. The results counter established views about how human tools and technologies come to improve ...