Errant gliding proteins yield long-sought insight

Nov 11, 2013

In order to react effectively to changes in the surroundings, bacteria must be able to quickly turn specific genes on or off. Although the overall mechanisms behind gene regulation have long been known, the fine details have eluded scientists for decades. Researchers at Uppsala University can now provide a picture of how proteins regulate genetic expression at the atomic level.

Genes can be regarded as blueprints for all of the molecular machines —normally proteins—that perform the tasks an organism needs for survival. Under different living conditions, different types of proteins are needed to break down the available types of nutrients, for example.

Because the surroundings can change rapidly, it is also important for bacteria and other organisms to be able to quickly reconfigure their biochemical operations in order to adapt to the new environment. This is done through regulation of the activity of proteins that already exist in the cell, but also by the binding of special proteins——to specific sites on the DNA, turning certain genes on or off, which in turn regulates the cell's production of various proteins.

"The latter might seem impossible, as an arbitrary transcription factor normally exists in just a handful of copies inside a bacterial cell, and one of them has to find a specific binding site on the DNA spiral, which contains some five million base pairs, in order to turn a gene on or off," says Erik Marklund, one of the lead authors of the new study.

Roughly 40 years ago it was observed that these transcription factors find their binding sites on DNA much more quickly that free diffusion in three dimensions would allow. Theoretical and empirical studies have shown that it is likely that the transcription factors bind to a chromosome wherever they encounter one and then glide along the DNA in search of their binding sites. This enables a dramatically faster search process, but precisely how this happens has been obscure, until now.

Using large-scale computer simulations, researchers in Johan Elf's research team at Science for Life Laboratory at Uppsala University managed to study in detail how the transcription factor LacI moves along DNA in a spiral path. The study, to be published in a coming issue of Proceedings of the National Academy of Sciences (PNAS), compares the energy required to break off the interaction with DNA with the energy needed to glide along the DNA and how many times a protein binds back to the same DNA strand before it starts to look elsewhere. From this comparison, the scientists derived the average time the transcription factor is bound to the DNA and how much of the DNA it has time to search through before it lets go.

"The insights from the study are of the greatest significance for our understanding of how the activity of genes is regulated. Not least they indicate how various DNA-binding proteins affect each other by acting as 'roadblocks' that impede the process. Ultimately this new knowledge also provides guidance regarding how the activity of genes can be manipulated."

Enhancing our understanding of how molecular interactions at the have consequences for the genetic activity of a cell brings new avenues for medical research. For example, improved simulation methods make it possible to test how new drugs can be expected to impact cells before they are even produced and tested in reality.

Explore further: Function follows form: Spatial structure determines transcription factor activity

More information: Transcription-factor binding and sliding on DNA studied using micro- and macroscopic models, www.pnas.org/cgi/doi/10.1073/pnas.1307905110

Related Stories

How proteins find their way on chromosomes

Jun 25, 2012

A research team at Uppsala University has managed to clarify how proteins that regulate the activity of genes quickly find their way on chromosomes among millions of possible binding sites. The study also confirms a more ...

Cell memory mechanism discovered

Aug 15, 2013

The cells in our bodies can divide as often as once every 24 hours, creating a new, identical copy. DNA binding proteins called transcription factors are required for maintaining cell identity. They ensure that daughter cells ...

Genetic switches play big role in human evolution

Jun 12, 2013

(Phys.org) —A Cornell study offers further proof that the divergence of humans from chimpanzees some 4 million to 6 million years ago was profoundly influenced by mutations to DNA sequences that play roles ...

The TALE of new tools to study gene regulation

Jul 01, 2013

In nearly every organism's genome, scattered between genes that encode proteins, long regulatory regions stretch across expanses of DNA. Understanding what role these so-called enhancer regions play in controlling the activation ...

Recommended for you

Research helps identify memory molecules

10 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

11 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

11 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0