The cathedral window in a new light

Nov 11, 2013 by Cécilia Carron

At the intersection of science and art: the Audiovisual Communications Laboratory has developped software to observe stained glass with a light and viewing angle that have been chosen to reveal unexpected details.

Adjusting the brightness setting of the large window on the south façade of the Cathedral of Lausanne seems impossible. Yet that's what a team from the Audiovisual Communications Laboratory has achieved. It is at once unusual and promising: the team's software can see on a screen any window with a selected brightness in order to grasp every detail. Backed by Google, this work is part of eFacsimile, a research project that aims to develop a new paradigm of acquisition, representation, and rendering for high-quality reproductions of art.

As a testament to the quality of this ancient art, stained glass has the advantage of being well preserved. Colors remain almost unchanged over centuries, as evidenced by the impressive 13th century pink adorning the southern facade of the church building of the Vaud capital. Despite their translucence, in order to grasp all aspects of their colors, viewers must dedicate numerous visits over several hours – and in different .

This video is not supported by your browser at this time.

To overcome the physical impossibility of moving the window or choosing the weather, the researchers began by analyzing the characteristics of the microstructure of the window glass in the laboratory. While a portion of the rays came directly to the viewer's eye, others dispersed, causing the sensation of glarein some places. The analysis of photographs of the material under different light intensities helpedhighlight the impurities and scattered rays. The researchers created a list translated into algorithms.

In conjunction with this, a camera located in the dome opposite the pink acquired images over a day and a half to capture a large range of luminosities. Simultaneously, three time-lapse cameras placed at the same level, but outside the building, captured a 180 degree view of the incident light on the window.

Ultimately, the program written by doctoral student Niranjan Thanikachalam is responsible for superimposing the images and selecting the brightness. In the example set for this experiment, seen on YouTube, a time lapse of the San Francisco Bay is placed behind the work. The result inspires ideas for other amazing unions that will transport the windows to other latitudes, luminosities, and weather conditions, thereby discovering them in a new light.

The goal now is to make a simple software to reproduce other glass windows. It is worth noting that more work around the cathedral was done in 2013 and is available on the LCAV website. A virtual tour is available there. With a simple click, for example, it is possible to hear a piece of organ in the exact acoustics of the location.

Explore further: MIT team's wireless Vital-Radio could follow breathing, heart rate at home

More information: lcav.epfl.ch/eCathedral

Related Stories

Scientists unveil energy-generating window

Oct 24, 2013

Scientists in China said Thursday they had designed a "smart" window that can both save and generate energy, and may ultimately reduce heating and cooling costs for buildings.

Nanostructures filter light to order

Nov 06, 2013

Arrays of nanoscale pillars made to reflect light of a selected color could find application as optical filters in digital cameras.

EPFL's campus has the world's first solar window

Nov 06, 2013

EPFL's new convention center is being equipped with an impressive glass façade composed of dye solar cells. The first architectural integration of this technology is a new step in Romande Energie and EPFL's ...

Harnessing natural light, indoors

May 08, 2012

(Phys.org) -- Using the most recent generation windows, architects and lighting designers can to control daylight, directing it where they want within a room. An EPFL laboratory has developed a simulation ...

Recommended for you

Team develops faster, higher quality 3-D camera

Apr 24, 2015

When Microsoft released the Kinect for Xbox in November 2010, it transformed the video game industry. The most inexpensive 3-D camera to date, the Kinect bypassed the need for joysticks and controllers by ...

Researchers finding applications for tough spinel ceramic

Apr 24, 2015

Imagine a glass window that's tough like armor, a camera lens that doesn't get scratched in a sand storm, or a smart phone that doesn't break when dropped. Except it's not glass, it's a special ceramic called ...

Classroom acoustics for architects

Apr 23, 2015

The Acoustical Society of America (ASA) has published a free online booklet for architects to aid in the application of ANSI/ASA S12.60-2010/Part 1-American National Standard Acoustical Performance Criteria, Design Requirements, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.