Researchers unveil method for creating 're-specified' stem cells for disease modeling

Oct 03, 2013

In a paper in Cell Stem Cell, a team led by researchers in the Boston Children's Hospital's Stem Cell Transplantation Program reports a new approach for turning induced pluripotent stem cells (iPSCs) into hematopoietic stem and progenitor cells for in vivo disease modeling.

With this strategy—which they call re-specification—the team, including Sergei Doulatov, PhD, and George Daley, MD, PhD, of Boston Children's, may have overcome technical barriers to generating blood disease-specific animal models from the thousands of iPSC cell lines now sitting in laboratory freezers around the world.

The main advantage of the technique lies in the raw material. The research team started with iPSCs that had already been directed to grow into myeloid progenitors, which are more closely related to the desired blood progenitors than skin or other fully differentiated cell types commonly used in stem cell experiments.

The researchers then used a select set of transcription factors to turn back the molecular clock just a little on these committed myeloid , turning them into blood progenitors that readily engrafted and differentiated when transplanted into mice.

The re-specification technique could help generate the large number of engraftable cells needed to create animal models from iPSCs generated from human patients suffering a range of blood disorders, such as anemias, thalassemia or sickle cell disease.

Explore further: Micro fingers for arranging single cells

Related Stories

Efficient model for generating human iPSCs developed

Aug 01, 2013

Researchers at the University of California, San Diego School of Medicine report a simple, easily reproducible RNA-based method of generating human induced pluripotent stem cells (iPSCs) in the August 1 edition ...

Recommended for you

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Detailed structure of human ribosome revealed

Apr 24, 2015

A team at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC - CNRS/Université de Strasbourg/Inserm) has evidenced, at the atomic scale, the three-dimensional structure of the complete ...

How to kill a protein

Apr 24, 2015

For decades scientists have been looking closely at how our cells make proteins. But the inverse is equally important: how cells kill them.

How RNA machinery navigates our genomic obstacle course

Apr 24, 2015

Once upon a time, scientists thought RNA polymerase—the molecule that kicks off protein synthesis by transcribing DNA into RNA—worked like a wind-up toy: Set it down at a start site in our DNA and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.