Researchers unveil method for creating 're-specified' stem cells for disease modeling

Oct 03, 2013

In a paper in Cell Stem Cell, a team led by researchers in the Boston Children's Hospital's Stem Cell Transplantation Program reports a new approach for turning induced pluripotent stem cells (iPSCs) into hematopoietic stem and progenitor cells for in vivo disease modeling.

With this strategy—which they call re-specification—the team, including Sergei Doulatov, PhD, and George Daley, MD, PhD, of Boston Children's, may have overcome technical barriers to generating blood disease-specific animal models from the thousands of iPSC cell lines now sitting in laboratory freezers around the world.

The main advantage of the technique lies in the raw material. The research team started with iPSCs that had already been directed to grow into myeloid progenitors, which are more closely related to the desired blood progenitors than skin or other fully differentiated cell types commonly used in stem cell experiments.

The researchers then used a select set of transcription factors to turn back the molecular clock just a little on these committed myeloid , turning them into blood progenitors that readily engrafted and differentiated when transplanted into mice.

The re-specification technique could help generate the large number of engraftable cells needed to create animal models from iPSCs generated from human patients suffering a range of blood disorders, such as anemias, thalassemia or sickle cell disease.

Explore further: Scientists identify key regulator controlling formation of blood-forming stem cells

add to favorites email to friend print save as pdf

Related Stories

Efficient model for generating human iPSCs developed

Aug 01, 2013

Researchers at the University of California, San Diego School of Medicine report a simple, easily reproducible RNA-based method of generating human induced pluripotent stem cells (iPSCs) in the August 1 edition ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0