The root of the matter: The role of nitric oxide in root branching

Oct 07, 2013

The structure and plasticity of root systems play an important role in determining the growth and yield of crop plants, and understanding how environmental and biological factors affect root structure is of key importance for plant scientists—particularly agricultural scientists.

Lateral roots, as the name implies, are secondary roots that grow laterally out of a plant's main , much like branches grow out of the trunk of a tree. The arrangement of roots is determined by a complicated combination of environmental signals based on the availability of nutrients and water in the surrounding environment, hormonal signals, and external stimuli. The presence and strength of each of these signals act as a cue to the plant, which can then make a 'decision' about when and where to form a lateral root.

Nitric oxide is known to be an important regulatory and signaling molecule in both plants and animals and plays an important role in formation. Numerous studies have found this molecule to be required for lateral root development in plants such as tomatoes, rice, corn, lupine, and Arabidopsis.

A new study, led by researchers at the Universidad Nacional Autónoma de México and the Universidad Autónoma del Estado de Morelos in Cuernavaca, Mexico, has re-evaluated the effect of on lateral root formation, focusing on the process of lateral root initiation and utilizing a new parameter for measuring lateral root density. By treating Arabidopsis thaliana with a nitric oxide donor (sodium nitroprusside) and examining the resulting root system formation, Dr. Dubrovsky and colleagues have determined that this molecule can, in fact, have the opposite effect as previously found and actually inhibit root branching. The new study is available for free viewing in the October issue of Applications in Plant Sciences.

"A key finding of this study is that nitric oxide has a dual action on root branching," states Dubrovsky. "Within the same root system, when evaluated on a cellular basis, it may both promote and inhibit root branching in different root portions."

It turns out, the timing of root initiation and how the lateral root density is measured are important. By taking these nuanced factors into account, Dubrovsky and collaborators have found that in primary root portions formed before treatment, nitric oxide promotes lateral root formation, whereas strong inhibition of de novo formed laterals was observed in primary root portions that began forming during the treatment.

"The lateral root is a basic unit of the root system," explains Dubrovsky. "To understand how lateral root initiation is controlled in different groups of plants, including crops, under different environmental conditions, we need a simple and reliable method for analysis and comparison."

A previous study led by Dubrovsky proposed a method, termed the lateral root initiation index, for quantifying the initiation of in plants. By normalizing root growth for differences in cell size, a more precise estimate can be obtained.

It was with this index that the current study uncovered the inhibitory effects of nitric oxide.

"This new parameter, the lateral root initiation index, provides researchers with the ability to uncover hidden but important information about root initiation and branching," says Dubrovsky. "This index can be used for any crop plant and, although not a panacea, we hope that the scientific community will recognize its value and ease of use."

Explore further: Study shows where damaged DNA goes for repair

Related Stories

Getting to the root of nutrient sensing

Jun 14, 2010

New research published by Cell Press in the June 15th issue of the journal Developmental Cell, reveals how plants modify their root architecture based on nutrient availability in the soil.

Getting to the root of better crops

May 16, 2013

(Phys.org) —The more crop scientists know about how plant roots take up water and nutrients, the better able they will be to develop crop plants with roots that can cope with challenging soil and environmental ...

The emerging story of plant roots

Jul 15, 2008

An international group of European and US scientists led by the Centre for Plant Integrative Biology at The University of Nottingham have uncovered a fascinating new insight into the unseen side of plant biology — the root.

New tool gets to the root of the matter

Feb 20, 2013

A U.S. Department of Agriculture (USDA) scientist and his colleague at Cornell University have developed a new tool for studying how roots take shape in the soil.

Recommended for you

Study shows where damaged DNA goes for repair

11 hours ago

A Tufts University study sheds new light on the process by which DNA repair occurs within the cell. In research published in the May 15 edition of the journal Genes & Development and available May 4 onli ...

Highly efficient CRISPR knock-in in mouse

May 01, 2015

Genome editing using CRISPR/Cas system has enabled direct modification of the mouse genome in fertilized mouse eggs, leading to rapid, convenient, and efficient one-step production of knockout mice without ...

Catalysing industrial change with marine-based enzymes

May 01, 2015

April 2015 saw the launch of an ambitious four-year EU project that hopes to unlock the immense potential of marine-sourced enzymes. The consortium behind INMARE (Industrial Applications of Marine Enzymes: Innovative screening ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.