Geneticist breeds new hope for chickpeas

October 14, 2013 by Evelyn Perez
Chickpea plant.

Eric von Wettberg, professor in the FIU Department of Biological Sciences, has received a grant from the National Science Foundation (NSF) to study the effects of domestication on wild chickpea genes.

According to von Wettberg, wild chickpeas were first domesticated 8,000 years ago in the Middle East. Without machinery and labor from animals, early selected crops that were easy to store and plant, including chickpeas, wheat, barley, flax, lentils and sweet peas. Using a crop rotation system, where dissimilar crops are grown in the same field during sequential seasons, the farmers created a form of chickpea that relies on human-applied fertilizers and less on bacteria, which allows it to self-fertilize. The consequence of this has been the reduction of the 's genetic diversity.

Ultimately, the goal of the research is to give farmers the information needed to breed more genetically diverse and sustainable chickpeas that will grow in the absence of fertilizers.

Chickpea is the world's second most cultivated food legume. A highly nutritious crop, it is used as human and animal feed and is one of the more inexpensive sources of protein. Most production and consumption takes place in developing nations in the Mediterranean, western and southern Asia, and Sub-Saharan Africa.

"This research has significant implications for resource-poor farmers in places like Ethiopia and India," von Wettberg said. "Some of today's most commonly used fertilizers are very expensive and have environmental consequences."

According to von Wettberg, chickpeas that can thrive without would also help reduce the carbon footprint and damage done to the environment in industrialized countries, including the U.S., Canada, Mexico and Australia.

Explore further: Fertilizers may not help poorest African farmers

Related Stories

Fertilizers may not help poorest African farmers

September 24, 2009

(PhysOrg.com) -- Researchers have linked poverty in sub-Saharan Africa with poor soil health, but two new Cornell studies find that the recommended practice of applying more fertilizer may not help the poorest farmers.

Fungus-on-Fungus Fight Could Benefit Chickpeas

December 8, 2009

(PhysOrg.com) -- The fungus Ascochyta rabiei threatens chickpea crops the world over. But now this blight-causing pathogen could meet its match in Aureobasidium pullulans, a rival fungus that Agricultural Research Service ...

New chickpeas set to revive Australian pulse industry

September 13, 2012

Two new varieties of chickpea developed by researchers at The University of Western Australia are expected to take the Indian market by storm and turn the tide for an industry that has struggled to recover from a devastating ...

Recommended for you

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.